SAGE 3030X Operation & Maintenance Manual

S3030-AAA-00002 V2.1
SAGE 3030X Operation & Maintenance Manual

For Reference Only

© Copyright 2018 by Schneider Electric

The information contained in this document is confidential and proprietary to Schneider Electric. It is not to be copied or disclosed for any purpose except as specifically authorized in writing by Schneider Electric. Although the information contained herein was correct and verified at the time of publication, it is subject to change without notice

Manual No. S3030-AAA-00002

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
<th>ECO #</th>
<th>Technical Review</th>
<th>Admin. Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>09-09-10</td>
<td>Initial Release</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>12-04-14</td>
<td>Schneider Electric Template</td>
<td></td>
<td>Chris Kerr</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>10-31-16</td>
<td>Added new PC104 modules</td>
<td></td>
<td>Chris Kerr</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>08-10-18</td>
<td>Added California Prop 65 Warning</td>
<td></td>
<td>Chris Kerr</td>
<td></td>
</tr>
</tbody>
</table>

Chris Kerr, Offer Manager - SAGE
Identification

<table>
<thead>
<tr>
<th>Product name:</th>
<th>SAGE RTU Product Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>References involved:</td>
<td>C3400 (SAGE 2400), C3800 (3030 M), C3700 (SAGE 1410), C3500 (SAGE 1430), C3600 (SAGE 1450), C3810 (LANDAC II), C3812 (SAGE 4400), C3414, C3132, C3133, C3140, C3230, C3231, C3232, C3233, C3235, C3241, C3243, C3244, C3247, C3248, C3263, C3320, C3321, C3322, C3330, C3360, C3429, C3430, C3432, C3437, C3438, C3476, C3831, C3835, C3861, C3439, C3442, C3443, C3444, C3445, C3446, C3447, C3448, C3449, C3450, C3451, C3452, C3453, C3454, C3455, C3456, C3457, C3459, C3460, C3462, C3464, C3465, C3466, C3467, C3468, C3469, C3470, C3471, C3472, C3473, C3474, C3475, C3477, C3478, C3479, C3480, C3481, C3482, C3484, C3485, C3486, C3487, C3488, C3489, C3490, C3491, C3492, C3493, C3494, C3495, C3530, C3532, C3534, C3550, C3551, C3552</td>
</tr>
<tr>
<td>Country - State</td>
<td>USA - California</td>
</tr>
</tbody>
</table>

California Proposition 65 Warning Statement for California Residents

WARNING: This product can expose you to chemicals including Lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Details of the supplier:

<table>
<thead>
<tr>
<th>Supplier / Manufacturer :</th>
<th>Schneider Electric USA, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address :</td>
<td>14400 Hollister St. Suite 400</td>
</tr>
<tr>
<td></td>
<td>Houston, TX 77066</td>
</tr>
<tr>
<td>Phone :</td>
<td>+1 (713) 920–6800</td>
</tr>
<tr>
<td>Web site :</td>
<td>www.sage-rtu.com</td>
</tr>
<tr>
<td></td>
<td>www.schneider-electric.com</td>
</tr>
</tbody>
</table>
1 Introduction

This user manual describes the operation and maintenance of the SAGE 3030X Substation Automation Platform.

Note: The term SAGE 3030X used throughout this manual refers to the SAGE 3030 and the SAGE 3030M collectively.

1.1 General Functions

The SAGE 3030X is designed to be the optimum “Substation Automation Platform”. It is designed to meet the complex requirements of the modern integrated substation by providing features that make it easier to interface with a broad range of IEDs as well as having the horsepower to run a wide range of automation applications.

Configuration

Equipped with a powerful browser based user-interface, its user-friendly configuration tools allow it to manage data with simple and intuitive click, drag and drop procedures. There is no special software to load or keep track of. The only requirement is a PC with Internet Explorer® version 6.0 or higher or Google Chrome in Secure Firmware. Configuration tools include features for auto-configuration and the ability to build custom templates for standard configurations making it easy to integrate IEDs with the data set you desire. Other features make analog scaling both powerful and flexible, eliminating the headaches of mapping data with different resolutions and scaling factors to the same port.

The SAGE 3030X includes Schneider Electric’s entire protocol library enabling it to talk to a wide range of IEDs and master stations without added costs and without limitations (i.e., any comm. port can be configured by the user to talk any available protocol).

Communications

The SAGE 3030X has sixteen (16) RS232 communications ports complete with LEDs for positive visual indication of data activity, an Ethernet port (or two if a SAGE 3030M) and a separate port for an external Dial-up modem, making it a compact yet powerful communications platform. In addition, the SAGE 3030X supports up to 224 Digital Inputs and 64 T/C Momentary or Latching Controls for picking up I/O points not available from IEDs. Built specifically with relay integration in mind, the SAGE 3030X has features that allow for pass thru connections from either the Ethernet or Dial-up port to any other port. Precision timing can be provided via GPS receiver or IRIG-B signals and bussed to all the serial ports.

Computation

In addition to its communications capabilities, the SAGE 3030X is equipped with a powerful CPU and plenty of memory for running automation applications. Every SAGE 3030X includes an IEC 61131 compliant Programmable Logic Controller runtime engine, which allows the user to build custom closed-loop logic algorithms for everything from simple “if-then” operations to sophisticated auto-sectionalizing schemes.

Climate

The SAGE 3030X meets or exceeds the requirements for survival in the harsh electrical environment of a utility substation. Based on field proven technology, the SAGE 3030X is tested against IEEE and ANSI surge withstand and fast transient specifications. It comes in a rugged metal enclosure intended for mounting into a standard 19-inch rack or relay panel. Power options include standard 125 VDC / 120 VAC and 20-60 VDC input power sources. The SAGE 3030X is specifically designed to make integrating IEDs in an electrical substation simple, secure, and ready for the next wave of substation automation applications.

General Operational Considerations
Note: The initial setup is for a Username of “Admin” and a Password of “Telvent!” (SAGE 3030M only). The Password for the SAGE 3030 is “Admin”

Note: With the release of firmware C0 and later, the initial TCP/IP address is now 172.18.150.50.

Note: For the latest manual, please see the appendix Accessing the Customer Website of the config@WEB Software Users Guide or config@WEB Secure Software Users Guide.

Figure 1-1 shows the SAGE 3030X with a broad range of devices, communications mediums and protocols. While not necessarily a configuration one might design on purpose, it shows the power of the SAGE 3030X and the possibilities it brings to the table. Most utilities have a wide range of new and legacy devices that need to be pulled together to form a functioning system. The SAGE 3030X meets the challenge without closing the door to future advancements. The SAGE 3030X is the perfect platform to pull everything together while leaving a clear and easy migration path into the future.

The Theory of Operation chapter should be used in conjunction with the schematics and printed circuit assembly drawings. The drawings also include bills of material for those users wishing to perform component level repair of failed assemblies.
1.2 Rear Panel Functions

Power Input

This is the power input according to the variance for the particular SAGE 3030X. The choices at time of purchase are: 85-350VDC and 85-264VAC universal supply, or 12-60VDC.
Chapter 1 - Introduction

SAGE 3030X Operation & Maintenance Manual

Analog Input Expansion

Using XT boards, up to 256 analog points.

Digital Input Expansion

Using XT boards, up to 224 status points or Form A accumulators (112 Form C accumulators).

SBO Control Expansion

Using XT boards, up to 64 SBOs.

Remote/Local Switch

In Local position, disables all hardware and IED controls.

PB Reset

Push Button Reset.

Alarm 1 & 2 Output

Form C outputs for Alarms.

IRIG-B In & IRIG-B Out

IRG-B input and output are available from these two ports.

GPS In

Antenna connector for optional GPS module.

PPP-R

Point to Point Protocol connector. The –R simply means Rear panel. There is also a front panel PPP port connected in parallel.
Switched Ethernet or LAN Switch

Three ports for optional Switched Ethernet. The main Ethernet port is on the front panel.

WAN

The port for the secondary Ethernet port. (3030M Only)

Ports 1 Through 16

Sixteen serial ports for communications with IEDs and/or masters.

1.3 Features

The SAGE 3030X uses the latest electronic technology for reliability, speed and maintainability. It is intended for use where limited on-board I/O is acceptable, yet is capable of polling a wide variety and number of IEDs or other devices.

The SAGE 3030X has the following new features:

- Web Browser “UIF” User InterFace configuration tool
 1. Uses Internet Explorer. See Internet Explorer Requirements for SAGE RTU's for a list of supported and configuration requirements. There are also guides for IE 8, 9, 10, and 11 respectively in the FAQ section of our documentation site.
 2. Starting with C3414-500-S02K0 firmware, Google Chrome is also supported without any special requirements.
- Full MTU / IED Protocol Library Standard
- Built-in 10/100 MB Ethernet port
- 16 Built-in RS232 Communications Ports
- Dedicated User Configuration Port
- Dedicated Serial Dial-up Port
- Over 100 LEDs for positive visual indications
1. Power, Run, Reset, Local, Time Source Failed, IED Failed, User Logged IN, Config Changed, RLL Running, Ethernet Link, Alarms 1 & 2
2. Communications LEDs (RX, TX, RTS, CTS, and DCD/+5V on each port)
 - Continuous IRIG-B output with built-in bus to all comm. ports for IRIG-B, GPS, RTC, or Protocol time synchronization
 - Wide range input power supply for standard Substation voltages
 - Rugged relay style metal enclosure for easy mounting
 - PC/104 Bus Architecture
 - Designed specifically for Electric Utility Applications
 - (Meets IEEE 472, ANSI C37.90 SWC & C3790.1 standards)
 - Optional – up to 256 analog inputs (requires a C3830 PC/104 AI card)
 - Optional – Internal GPS Receiver
 - Optional – Internal 3 Port Ethernet Switch
 - Optional – External Digital & Analog Inputs and SBO Control Output points
 1. Up to 224 Digital or 112 Accumulators Inputs
 2. Up to 256 Analog Inputs
 3. Up to 64 T/C Momentary and Latching Control Outputs
 4. Up to 256 1ms SOE with C3835 PC/104 expansion card. Possible to stack 2 C3835 to enable up to 512 1ms SOE points if C3830 Analog Inputs are not in use.

1.4 Architecture

Figure 1-4 shows a simplified block diagram of the SAGE 3030X Baseboard that illustrates its general architecture and major components. The basic SAGE 3030X consists of a Baseboard and a microprocessor daughter board.

Additionally, the open architecture of the PC/104 interface provides for expanded functions. You may add a PC/104 GPS receiver and/or a 3-port Ethernet switch.
1.5 Graphical User Interface (GUI)

The SAGE 3030X is easily configured using the standard web browser, Internet Explorer version 6.0 or later, or Chrome. The physical connection may be made in one of four ways:

- Ethernet connection using an Ethernet crossover cable directly to the front panel Ethernet port
- Ethernet connection to a network, locally or remotely
- PPP connection using a null-modem cable to the PPP-F or PPP-R port
- Console – this method commonly used to read and/or change IP address and perform diagnostics and troubleshooting.

See Appendices D and E in the config@WEB Software Users Guide for details on connections.

The GUI is designed around the classical client/server model. A web browser is all you need for your client (PC) and you can browse any Device product or any version of that product that supports our web interface. All configuration data is stored on the SAGE 3030X in the form of Extensible Markup Language (XML). XML data is served up to the browser within HTML pages or transformed into HTML via Extensible Stylesheet Language (XSL). In either case data is presented to the user in an intuitive format.
using common design elements like forms, Radio Buttons, Spin Boxes, Alert Boxes, etc. for much of the data entry.

The GUI supports File Transfer Protocol (FTP), or Secure FTP on the Secure Firmware, to transfer files to/from the SAGE 3030X and the client. The file types include Device applications, Web pages, Configuration files, and the operating system. In short, every file within one SAGE 3030X can be transferred to another 3030X or parts of the 3030X file system can be upgraded as needed. This provides a powerful means of performing firmware upgrades or configuration changes.

1.6 **Point Mapping**

The substation products of today must interface to a wide variety of I/O and industry standard IEDs. This creates within the SAGE 3030X a large database of points that must be transferred to one or more master stations.

The SAGE 3030X GUI supports an intuitive drag and drop point mapping scheme. Each point within the SAGE 3030X is named and scaled with user definable names and values. Scaling is used for local data display as well as protocol count scaling for conversion of data from one protocol to another.

1.7 **Communications**

The SAGE 3030X supports a large suite of communication protocols over many different types of communications media. An Ethernet port (or two if a SAGE 3030M) and sixteen (16) RS232 ports come as standard hardware. Three switchable Ethernet ports are optional. Also supported is an IRIG-B input on BNC. IRIG-B output is supported on all 16 RS-232 ports.

The UIF is a dedicated RS232 port that supports Point-to-Point Protocol (PPP). This port can be used for initial setup, local maintenance and configuration updates.

All SAGE substation automation products support multiple Device and IED protocols. This allows for data to be mapped from IEDs to multiple masters via different Device protocols. Example: If you were replacing your current master station software that talks Series V protocol with a system that supports DNP, your Device could talk to both the old master and the new master at the same time. This provides an excellent means of replacing legacy RTU/MTU equipment without interruption to data acquisition.

An emerging need for substation products is SCADA protocols to communicate over Ethernet all the way down to the Device. The SAGE 3030X supports DNP, Modbus, and IEC 104 over Ethernet.

1.8 **Relay Ladder Logic (RLL) – IEC 61131-3**

The SAGE 3030X supports a RLL Runtime Target that accepts applications that can be developed using any one of the five IEC 61131-3 languages plus flow Charting. Programs are developed on an application workbench that runs only on the client. Fully developed/debugged programs can be downloaded into the SAGE 3030X and activated for execution.

RLL applications have access to all the data within the Device and make use of the powerful mapping capabilities of the GUI. Output data from RLL applications can be viewed in real time data displays.

1.9 **Packaging**

The SAGE 3030X is packaged in an enclosure measuring 11” deep by 5.25” high by 19” wide. The enclosure is suitable for mounting in a standard 19” rack, or in a panel (with suitable depth). For practical purposes, the clearance for depth must include room for appropriate cables.

1.10 **Protection**

All terminations contain any transient protection required for the particular input function. In addition to this, relays include matrix and kick-back diodes and digital inputs include current limiting resistors.
2 Specifications

2.1 Size

ENCLOSURE

19”x 10.5”x 5.25” metal chassis
Fits standard 19” rack/relay panel

Figure 2-1 3030X Front View

Figure 2-2 3030X Rear View

2.2 Visual Indications

COMMUNICATIONS

5 LEDs per RS-232 port
(DCD/+5V, RX, RTS, TX, CTS)

OTHER INDICATIONS

Power, Run, Reset, Local, Time Source Failed, IED Failed, User Logged IN, Config Changed, RLL Running, Ethernet Link, Alarms 1 & 2

2.3 User Computer Requirement

OPERATING SYSTEM

Windows XP & Vista with Internet Explorer Version 6 or above, or Chrome in later firmware. If using XML to Excel macro, Microsoft Office 2003 or above.
2.4 **Environmental**

- **OPERATING TEMPERATURE**: -40° to +85°C
- **RELATIVE HUMIDITY**: 5% to 95%, non-condensing
- **TRANSIENT PROTECTION**: All user field connections designed to pass IEEE 472-1974, ANSI C37.90.1-1989, ANSI C37.90-1979 (R1982)

2.5 **CPU/Memory**

Please refer to the CPU Manual for CPU/Memory Specifications

2.6 **User Interface**

- **WEB BROWSER**: Internet Explorer or Google Chrome
- **ETHERNET**: 10/100BASE-T (RJ45)
- **PPP**: RS232C 38.4kbps

2.7 **Communications**

- **ETHERNET**: One or two (if SAGE 3030M) built-in 10/100BASE-T (RJ45) auto-negotiate (will adjust to the speed and half/full duplex of the connecting device)
- **SERIAL**: 16 RS-232C (DB-9) Ports
- **CONSOLE**: RS232C (DB-9)
- **DIAL-UP**: RS232C (DB-9)
- **SERIAL SPEEDS**: 300-9600 bps (38,400 for PPP)
- **PROTOCOLS**: Synchronous and asynchronous, bit & byte

2.8 **C3463 PCA Ethernet 10/100 5-Port Switching Hub (Optional)**

- **ETHERNET**: Five built-in 10/100BASE-T (RJ45) auto-negotiate (will adjust to the speed and half/full duplex of the connecting device)

2.9 **Power Requirements**

- **INPUT VOLTAGE**: 85-350VDC / 85-264VAC
- **12-60VDC**

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Typical Power Consumption</th>
<th>Max Power Consumption @ Rated Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-60VDC</td>
<td>12.75 Watts</td>
<td>18 Watts</td>
</tr>
<tr>
<td>85-350VDC</td>
<td>12.75 Watts</td>
<td>18 Watts</td>
</tr>
<tr>
<td>85-264VAC</td>
<td>25 Watts</td>
<td>30 Watts</td>
</tr>
</tbody>
</table>

Note: Power consumption is measured at the Power Input terminals on the back panel.
2.10 **Alarm Outputs**

CONTACT FORM Form C

MAX OUTPUT POINTS 2

CONTACT RATINGS 30 VDC @ 2A, 129 VDC @ 500 MA

2.11 **IRIG-B Input**

MODULATED/DEMODULATED

FORMAT Accepts IRIG-B signal through BNC connector

2.12 **IRIG-B Output**

DEMODULATED Available on all 16 Communications ports

FORMAT Pins 4&6 on RS-232C (DB-9)

2.13 **GPS Receiver – Option**

(Requires optional internal module)

2.14 **RS232 Power (Selectable)**

5VDC Configurable on all 16 Comm ports

FORMATS Pin 1 on RS-232C (DB-9)

POWER AVAILABLE 5W Max Total

2.15 **Logic Capabilities**

IEC 61131 compliant PLC runtime engine.

2.16 **Digital Inputs**

(Requires optional external termination (XT) module and status wetting supply as required)

2.16.1 **Status Inputs**

ISOLATION Optically isolated, 1500VDC

LOOP VOLTAGES 12, 24, 48, and 129VDC

DEBOUNCE 20 msec nominal

CONFIGURATION 2 terminals per point (+ and -)

MAX INPUTS 224

POWER Baseboard and XT excitation

INDICATORS One LED per point.

XT DIMENSIONS 16pt 5x8 inch, 32pt 5x8 inch & 32pt 7x19 inch

2.16.2 **Accumulator Inputs**

ACCUM. FORMATS FA, FC (1 or 2 counts/cycle)

ACCUM. INPUT RATE 20 pps max.
2.16.3 **SOE Inputs**

- **ACCURACY**: 5ms, leading edge tagged
- **DEBOUNCE**: 20ms fixed
- **STORAGE CAPACITY**: 256 events, optional 1024

2.17 **Analog Inputs (Optional)**

Note: Optional analog inputs requires a C3830 PC/104 card and one or more XT AI card(s) operating on a standard AI bus.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT TYPE</td>
<td>Differential</td>
</tr>
<tr>
<td>INPUT RANGES</td>
<td>±5VDC, 0-5VDC, 1-5VDC, ±1mA, 0-1mA, 4-20mA, 10-50mA</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td>12 bits (11 bits plus sign)</td>
</tr>
<tr>
<td>COMPREHENSIVE ACCURACY</td>
<td>±0.25% FS between −40° and +85°C</td>
</tr>
<tr>
<td>REFERENCE VOLTAGES</td>
<td>±4.500V</td>
</tr>
<tr>
<td>CONVERSION RATE</td>
<td>All analogs once per second</td>
</tr>
<tr>
<td>COMMON MODE RANGE</td>
<td>±10V</td>
</tr>
<tr>
<td>COMMON MODE REJECTION</td>
<td>80 dB @ 50/60Hz</td>
</tr>
<tr>
<td>NORMAL MODE REJECTION</td>
<td>60 dB @ 50/60Hz</td>
</tr>
<tr>
<td>INPUT RESISTANCE</td>
<td>10M ohm or greater</td>
</tr>
<tr>
<td>MAX INPUTS</td>
<td>256</td>
</tr>
<tr>
<td>XT CONFIGURATION</td>
<td>2 terminals per point (+ and -) with a shared shield ground.</td>
</tr>
</tbody>
</table>

2.18 **SBO Control Outputs**

(Requires optional external termination (XT) module)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DURATION</td>
<td>Software programmable in 5 msec. increments</td>
</tr>
<tr>
<td>MOMENTARY</td>
<td>KUP type 1FC/2FA 10A @ 240VAC or 10A @ 28VDC, KUEP type 1FC 3A @ 150VDC, 2FA 5A @ 150VDC, 1FX 10A @ 150 VDC.</td>
</tr>
<tr>
<td>LATCHING</td>
<td>KUL type 1FC/2FA 10A @ 240VAC or 10A @ 28VDC.</td>
</tr>
<tr>
<td>RELAY INSTALLATION</td>
<td>Socketed</td>
</tr>
<tr>
<td>MAX OUTPUT POINTS</td>
<td>64 T/C Pairs (128 coils)</td>
</tr>
<tr>
<td>XT DIMENSIONS</td>
<td>4pts / 6.4x8 inch card & 8pt 7x19 inch</td>
</tr>
</tbody>
</table>
3 Installation

This chapter describes the normal installation and operation procedures for the SAGE 3030X Substation Automation Platform. Prior to installing the 3030X, we recommend that you perform a preliminary functional test to verify that the configuration is correct for the intended site and also to check for any undetected shipping damage. Preliminary testing should be performed after the 3030X has been setup using the information in the previous chapters.

3.1 General Installation Procedure

3.1.1 Rack Installation

As shown in Figure 3-1, the SAGE 3030X is made to be mounted in a standard 19” rack assembly. All that is needed is four screws. No special ventilation is needed.

The procedures for connecting field wiring to the RTU are provided in the following sections.

Caution: The printed circuit assembly contains CMOS devices and is sensitive to static discharge. Boards should be handled only at a grounded workstation. Avoid touching the electronic components, jumpers, connectors, or the exposed etches on the boards.

Figure 3-1 SAGE 3030X Dimensions
3.1.2 Panel Installation

The SAGE 3030X may also be installed in a panel, provided there is enough depth behind the panel to accommodate the 3030X plus cable connections. Follow the cutout and hole-tapping template shown in Figure 3-3.
3.1.3 User Interface Connections

There are four physical ways to connect to the SAGE 3030X:

- Ethernet connection to a network using a Straight-through cable to the CPU card
 - Best way to gain remote access
- Ethernet connection locally using an Ethernet crossover cable to the CPU card
 - Best way to gain local access
- PPP (Point-to-Point Protocol) connection using a null-modem cable to the UIF port
 - Moderately slow; can still access RTU locally or even remotely with a dedicated comm. Channel
- Console – this method commonly used to read and/or change IP address

Both the PPP and the Ethernet connections use the same GUI running on Internet Explorer or Google Chrome. The difference is that the PPP connection runs at 38,400 baud; the Ethernet connection runs at 10/100MB. When dealing with a GUI, obviously the faster connection is much better. Therefore, the primary connection to the RTU is Ethernet.

See Internet Explorer Requirements for SAGE RTU’s for a list of supported and configuration requirements. There are also guides for IE 8, 9, 10, and 11 respectively in the FAQ section of our documentation site. Starting with C3414-500-S02K0 Firmware, Google Chrome is also available to use as your web browser for use with all SAGE RTU’s.

3.2 Power Input

Field input power depends upon the variance of your particular SAGE 3030X. See “Power Input” variance in Figure 3-4. Refer to your RTU assembly drawing for your particular variance. After determining the correct input power, connect the power to the POWER INPUT termination on the back of the 3030X as shown in Figure 3-8.
3.3 Ethernet Ports

The 3030X is equipped with one standard Ethernet port on the front panel. If your variance has Option 2 or 3 (see Figure 3-4), it means that you have Switched Ethernet. Switched Ethernet provides three more Ethernet ports on the rear panel as shown in Figure 3-8.

Switched Ethernet is a method of increasing the number of available Ethernet ports while at the same time ensuring that traffic flow (throughput) is optimized. The switched Ethernet card is “smart” because it can recognize whether you have a straight-through or cross-over Ethernet cable attached to one of the switched ports, and compensate accordingly. As a matter of good configuration practice, we recommend that you always use a cross over cable when accessing the SAGE 3030X directly, as shown in Figure 3-5, and always use straight through cables when connecting through a network, as shown in Figure 3-6.

For SAGE 3030M only: In addition to the standard Ethernet port and the Switched Ethernet, the 3030M is equipped with a WAN Ethernet port on the rear panel. This port uses a separate NIC (Network Interface Card) from the standard and the switched ports and thus must be accessed by a separate IP address. This port allows the 3030M to be a component of another network.

Figure 3-5 Recommended Direct Connections with a Switched Ethernet Card

Figure 3-6 Recommended Network Connections with a Switched Ethernet Card
3.4 Serial Ports

3.4.1 Front Panel (Console & PPP)

The SAGE 3030X has two RS232 connectors on the front panel. One is the Console, the other is PPP-F (Point to Point Protocol). The F is a reminder that there are two PPP ports; one on the Front, one on the Rear. The Front and Rear PPP ports are meant as a convenience; they are in parallel. Electrically, there is only one PPP port.

Figure 3-9 Console & PPP DB9 Pin-out

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin #</th>
<th>Description</th>
<th>Type</th>
<th>Console</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>Data Carrier Detect</td>
<td>Input</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RX#</td>
<td>2</td>
<td>Receive Data</td>
<td>Input</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TX#</td>
<td>3</td>
<td>Transmit Data</td>
<td>Output</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>Data Terminal Ready</td>
<td>Output</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DGND</td>
<td>5</td>
<td>Ground</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>Data Set Ready</td>
<td>Input</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>Request To Send</td>
<td>Output</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>Clear To Send</td>
<td>Input</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>Ring Indicator</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = Active

3.4.2 Rear Panel (Serial Ports)

There are 17 RS232 connectors on the Rear Panel. One of the connectors is PPP, which is in parallel with the PPP connector on the front (see above). The other 16 serial ports are used for connections to IEDs and/or MTUs.

Figure 3-10 Serial Port DB9 Pin-out
<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin #</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>Data Carrier Detect *</td>
<td>Input</td>
</tr>
<tr>
<td>PWR</td>
<td></td>
<td>+5V for aux comm. devices *</td>
<td>Output</td>
</tr>
<tr>
<td>RX#</td>
<td>2</td>
<td>Receive Data</td>
<td>Input</td>
</tr>
<tr>
<td>TX#</td>
<td>3</td>
<td>Transmit Data</td>
<td>Output</td>
</tr>
<tr>
<td>IRIGB</td>
<td>4</td>
<td>Timing signal</td>
<td>Output</td>
</tr>
<tr>
<td>DGND</td>
<td>5</td>
<td>Ground</td>
<td>N/A</td>
</tr>
<tr>
<td>IRIG_GND</td>
<td>6</td>
<td>IRIG Ground</td>
<td>N/A</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>Request To Send</td>
<td>Output</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>Clear To Send</td>
<td>Input</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>Ring Indicator</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Selectable for either DCD or PWR – “No” for DCD, “Yes” for PWR. The default is “No”. See Communication Port Configuration below.

3.4.3 Radio Keying Option

Some communications devices require an open collector output to key the device for data transmission. The config@WEB RTUs do not have this output on their baseboards. The optional C3263 Radio Keying Module provides an optically isolated open collector output to perform this function. Configure the RTS
(Request to Send) to K (for Keyed) in the Communications Port Configuration to control this output. The module is installed as shown in the figure below.

Figure 3-11 C3263 Radio Keying Board Installation

![Diagram of C3263 Radio Keying Board]

Note: RTS (Request to Send) in the Communications Port Configuration must be in the K (Keyed) position for the C3263 Radio Keying Board to work. The RTS time may be controlled with the CTS Delay (no RTU reset required after change) in the Communication Channel Configuration.
3.5 Expansion Board Connections

Whether it’s Digital Input Expansion, or SBO Control Expansion, the layout and ribbon cable connections follow the principles shown in Figure 3-12.

Figure 3-12 Expansion Board Connections

Row consists of 2 half boards, or 1 full board

Full board is not necessarily “2 half boards wide” physically

3.5.1 Digital Input Expansion

Note: Requires optional external termination (XT) module.

The SAGE 3030X uses the same digital input termination hardware for both status and accumulator inputs. The SAGE 3030X XT connection is on the rear panel (see Figure 3-8).

The DI XT’s are connected together with standard ribbon cables in a daisy chain. The first XT is connected from the DI Expansion connector on the 3030X rear panel to J1 on the XT. Subsequent XT’s are daisy chained together (J2 to J1) until a total of 224 input points has been reached.

In the case of a 16 input XT (half board), J3 of the first board is tied to J3 of the second 16 point XT. The first C3232 requires address jumper W1 to be in the First position and the next C3232 to have W1 in the Second position. The excitation voltage is provided by the field input power and is pre-wired to the DI XT’s and is common bussed to all of the input circuits.

Digital inputs are added using one of the three types of digital input XT’s. The C3232 IS2 DI XT’s (Figure 3-16) provide 16 inputs each and the C3132 and C3432 (Figure 3-14) and (Figure 3-13) have 32 inputs each. All digital inputs include individual LEDs that are illuminated when the corresponding contact is closed.
The DI XT provides two terminals for each digital input. The "+" sign indicates the terminal which connects to the wetting voltage. These "+" terminals are all wired together on the XT. The other terminals connect to the opto-coupler. Form A accumulators require one digital input (two wires) each and are hooked up the same as status inputs. Form C accumulators require two digital inputs (typically three wires) each and should be wired according to the example in the left side of Figure 3-15. Note that either positive terminal in the input pair can serve as the common terminal.
The C3232-IS2-0000X DI XT allows individual input circuit selection for a positive or negative bussed excitation source as well as non-bussed individual circuit excitation. Refer to Figure 3-16 for input circuit jumper locations. The XT is shipped with all the input jumpers in the "I" isolated input position. This selection requires the monitored circuits to supply the excitation voltage to the input point. The plus or minus XT bus is selected by placing one of the jumpers in the "B" position to select either the positive or negative voltage. Both input jumpers in the "B" position are considered an illegal condition since the input will always be active. Figure 3-17 shows the equivalent circuits for each possible selection.

Figure 3-16 C3232-IS2 DI XT
3.5.2 SBO Control Expansion

Note: Requires optional external termination (XT) module.

The rear panel of the SAGE 3030X includes an SBO Control Expansion connector. Using ribbon cables in a daisy-chain connection, up to 64 SBOs (128 coils) may be added to the 3030X.

The first SBO XT connector J1 is attached to the SBO Control Expansion connector on the rear panel of the 3030X. J3 of a C3233 XT is attached to J1 of the next half size XT, while J2 is tied to J1 of the next XT in the daisy chain.

3.5.2.1 C3233 SBO XT

The C3233 panel mount SBO XT (Figure 3-18) holds eight KUP-type momentary or 4 KUL-type latching-relays. When equipped with momentary-relays, it provides four momentary SBO control outputs and when equipped with latching-relays, it provides four latching outputs. It can also be equipped with KUEP-type relays for high-current DC applications. Its normal contact arrangement is a dual form A for KUP with KUL-type relays and single form X with KUEP-type relays. The SBO XTs are connected together with standard ribbon cables in a daisy-chain.
In a typical installation, the uppermost XT contains the first four or eight outputs, the next lower XT contains the next group of outputs, and so on. The typical SBO XTs are equipped with relays rated for 10A at 240VAC or 24VDC. For applications that require that higher DC voltages be switched, KUEP-type relays with magnetic blowout must be used. These relays have a contact rating of 10A at 150VDC and their standard contact arrangement is form X.

Warning: KUP and KUL type relays should not be used to switch 125VDC devices, even if the current is significantly less than 10A. The contact rating of these relays is greatly reduced at high DC voltages and the relay is subject to failure if the maximum current is exceeded. Consult the factory if you are unsure of the suitability of the relays installed on your SBO XTs.

Figure 3-19 illustrates the hookup procedure for the first output for the various versions of the SBO XT. The momentary and latched output functions shown (trip/close and on/off) are arbitrary; the master station that commands the RTU determines the actual functions. The firmware simply treats the SBO XT as a group of 8 or 16 relay coils without regard to their assigned functions.
3.5.2.2 C3133 SBO XT

The C3133 19-in. rack mount SBO XT (Figure 3-20) provides eight momentary-control outputs, in the form of 16 KUP or KUEP type momentary-relays. All relays are installed in sockets with mechanical restraints and have associated LEDs to indicate when a specific relay coil is energized. This XT is cabled onto the SBO bus by connecting the ribbon cable from the 3030X rear panel connector or OUT connector of a previous XT to the J1 (IN) connector of the C3133. The J2 (OUT) connector is used to connect to the next XT on the SBO bus.

3.5.2.3 C3247 SBO XT

The C3247 eight-point latching relay board (Figure 3-21) provides two Form C contacts per point. This XT always contains 24VDC KUL type relays installed in sockets with mechanical restraints. This panel mount board, which is 8 x 6.5-inches, may be installed in any position, just like the C3233 SBO XT. If this XT is connected as a second half to the C3233 SBO XT, only the first four points are used. This XT is cabled onto the SBO bus by connecting the ribbon cable from the 3030X rear panel connector or OUT connector of a previous XT to the J1 (IN) connector of the C3247. The J2 (OUT) connector is used to
connect to the next XT on the SBO bus. Two LEDs (LATCH/RESET) are provided per point, with one of the LEDs illuminating during the relay energize time to indicate the new state of the relay.

Figure 3-21 C3247 Latching SBO Diagram

3.6 Alarm Outputs
The SAGE 3030X has two Form C outputs on the rear panel for alarms. From the config@WEB interface, you may configure these alarms to be activated by any DI. See Chapter 2 Specifications for contact ratings.

3.7 Remote/Local Switch
The Remote/Local switch on the rear panel disables all controls for hardware and IEDs when the switch is in the Local position. For normal controls operation, keep the switch in the Remote position.

3.8 GPS In
This connector on the rear panel is for a GPS antenna, if the variance supports the GPS option.

3.9 IRIG-B In & IRIG-B Out
IRIG-B input and output are available from these two ports on the rear panel. Use RG58 coaxial cable for connections between devices for the IRIG-B signal.

3.9.1 IRIG-B signal as a Input to the RTU
If the RTU IRIG-B system is connected to a IRIG-B source, it must provide a B 0 2 X or B 1 2 X Time Code Format signal to the RTU.

Modulation/Frequency (First Digit of IRIG-B Time Code Format)
- 0 - Pulse Width Code
- 1 - Sine Wave, Amplitude Modulated

Frequency/Resolution (Second Digit of IRIG-B Time Code Format)
- 2 - 1kHz/1ms
Coded Expressions (Third Digit of IRIG-B Time Code Format)
0 through 7 is acceptable. The RTU IRIG-B system uses only the BCDtoy (Binary-Coded-Decimal time-of-year) Coded Expressions part of the IRIG-B data stream. The BCDtoy is included in Coded Expressions 0 to 7 of the IRIG-B data stream.

3.9.2 IRIG-B signal output from the RTU
If the RTU IRIG-B system is driven by a time source in the RTU, the Time Code Format is B 0 2 2.

Modulation/Frequency (First Digit of IRIG-B Time Code Format)
0 - Pulse Width Code

Frequency/Resolution (Second Digit of IRIG-B Time Code Format)
2 - 1kHz/1ms.

Coded Expressions (Third Digit of IRIG-B Time Code Format)
2 - BCDtoy

3.9.3 IRIG-B Reference
The following is a link to the IRIG Standard 200-04 document for IRIG Serial Time Code Formats.

3.10 PC/104 Expansion Installation
If the SAGE 3030X was purchased without options, and you later want to upgrade for extra Ethernet ports, GPS, or add AI, notice that the PC/104 boards must be stacked with the CPU always on top.

Figure 3-22 PC/104 Board Stacking

Note: The GPS antenna RG-58 coaxial cable must be no longer than 75 feet.
3.10.1 C3461 GPS PC/104 Jumper Configuration for P1 & P2

P1 and P2 should have the jumpers set as shown in Figure 3-23.

Figure 3-23 C3461 Board Layout

3.10.2 C3830 PC/104 AI Card

The PC/104 Analog Input Module is an option that can be used with the SAGE 1410, 1430 or 3030X models. It adds traditional DC analog inputs to the I/O capabilities of the base unit. The PC/104 Analog Input module is easy to add by simply plugging it into the PC/104 bus. It is added in the same way that a Serial Communication Expansion module or GPS Module is added to the PC/104 stack. Once the card is added, a ribbon cable connects it to the first SAGE Analog Input XT card. Additional modules then connect together in a daisy chain fashion.

- Add up to 256 analog input points
- All Standard input ranges supported
Figure 3-24 C3830 PC/104 AI Card

Figure 3-25 C3830 PC/104 AI Card w/XTs

3.10.3 C3835 PC104 1MS SOE Expansion Board
Refer to drawing no. C3835-002-REV-X, Schematic PC 104 1MS SOE Board, locate the Sage 2000 Operations & Maintenance Manual, also Figure 3-26 - C3835 Diagram.
The PC104 1MS SOE board is manufactured to the PC104 specifications of 3- 9/16” x 3- 13/16”. A maximum of two of these boards can be placed on the PC 104 Stack of any SAGE RTU. This card gathers and time tags events with a 1ms resolution. The C3835 board has no digital input terminations however, any Sage Status Input board can be directly connected to the 20 Pin Status input connector J1. The input data is conditioned by the SOE and then passed to the CPU via the PC 104 connection.

The SOE Processor, Analog devices ADSP 2185N is an enhanced version of the previous ADSP 2105 used on the C3235 board. This processor greatly increases the processing capabilities with a 12.5ns Instruction cycle time, and 80MIPS sustained performance, all the while running the same field proven code as the C3235 board. This enhanced performance allows the C3835 the ability to 1ms time tag an entire 256 point Status bus.

The need for external program, data, and boot memory are eliminated since this is now internal to the DSP processor. Upon power up, the CPU sends the program data to the DSP via an IDMA data transfer to load the DSP with the code. Once the code is loaded, the DSP boots and runs. The board population is also reduced by utilizing the baseboard power supply, and reset circuit. The need for an external high precision 1Khz clock source is also eliminated since newer RTU protocols now enable accurate system time syncing and the use of onboard IRIG-B and or GPS. Additional Features of the C3835 PC 104 1MS SOE board:

- PC 104 Interface
- All Sage Baseboards can utilize 1MS SOE
- Meets SWC Requirements
- DI via DI XT interface
- 12.5ns Instruction Time (80MIPS processor)
- Same Run Time code as C3235
- 512 total points per RTU
- Uses baseboard 1Khz interrupt source
Figure 3-27 C3835 Block Diagram
3.10.4 **C3463 PCA Ethernet 10/100 5-Port Switching Hub (Optional)**

The optional C3463 5-Port Ethernet switching hub expands the number of Ethernet ports to five. There is no special software needed, but because of clearance restrictions, the card must be installed on top.

Figure 3-28 C3463 5-Port Ethernet Switching Hub
4 Maintenance

This chapter describes maintenance procedures for the SAGE 3030X. Those users who desire a more thorough technical understanding of the SAGE 3030X should refer to the Theory of Operation chapter which contains detailed descriptions of each module, and to the Drawings chapter, which contains complete schematics, bills of materials, and printed circuit board assembly drawings.

The following equipment is recommended for performing routine maintenance and repair on SAGE 3030X RTUs:

- General-purpose 3-1/2 digit DMM
- General-purpose oscilloscope

The SAGE 3030X requires no routine adjustments.

4.1 Comm Port Diagnostics

The RTU includes a built-in test routine that allows limited testing of the communication ports. Click the Command tab, then click Serial Comm. You will see a screen similar to Figure 4-1.

Figure 4-1 Command Communications Port Data

<table>
<thead>
<tr>
<th>Port Number</th>
<th>RTS</th>
<th>+5V</th>
<th>Name</th>
<th>Protocol</th>
<th>Command Port Data</th>
<th>Test Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #1</td>
<td>K</td>
<td>No</td>
<td>Series V to Master</td>
<td>Series V</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #2</td>
<td>K</td>
<td>No</td>
<td>Port 2</td>
<td>DNP</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #3</td>
<td>K</td>
<td>No</td>
<td>Port 3</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #4</td>
<td>K</td>
<td>No</td>
<td>Port 4</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #5</td>
<td>K</td>
<td>No</td>
<td>Port 5</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #6</td>
<td>K</td>
<td>No</td>
<td>Port 6</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #7</td>
<td>K</td>
<td>No</td>
<td>Port 7</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #8</td>
<td>K</td>
<td>No</td>
<td>Port 8</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #9</td>
<td>K</td>
<td>No</td>
<td>Port 9</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #10</td>
<td>K</td>
<td>No</td>
<td>Port 10</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #11</td>
<td>K</td>
<td>No</td>
<td>Port 11</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #12</td>
<td>K</td>
<td>No</td>
<td>Port 12</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #13</td>
<td>K</td>
<td>No</td>
<td>Port 13</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #14</td>
<td>K</td>
<td>No</td>
<td>Port 14</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #15</td>
<td>K</td>
<td>No</td>
<td>Port 15</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #16</td>
<td>K</td>
<td>No</td>
<td>Port 16</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Under the Test Mode heading, select the type of test you wish from the pull-down menu for the port of interest. The choices and the meaning of each type of test are listed below. See Figure 4-3 for the expected results for each test.

Normal
In the normal mode, the selected comm channel functions normally. Each channel will be in this mode when the display is called up. Each channel is automatically restored to this mode when you exit from the display or the RTU is reset.

Mark

In the mark mode, the selected comm channel outputs a continuous stream of ones. Marks for the RS-232 channel are low (negative) voltage pulses, and low frequency (1,200Hz) for any attached 202 modem.

Space

In the space mode, the selected comm channel outputs a continuous stream of zeros. Spaces for the RS-232 channel are high (positive) voltage pulses, and high frequency (2,200Hz) for any attached 202 modem.

Alt

In the Alt mode, the selected comm channel outputs a continuous stream of alternating ones and zeros at the baud rate originally selected for the channel.

You may use a scope to see the outputs on the ports under test as shown in Figure 4-3. Notice that the test mode will terminate and return to Normal mode if you leave this screen with the pull-down menus in anything other than Normal, as shown in Figure 4-2.

Figure 4-2 Clicking the Back Button While in Test

<table>
<thead>
<tr>
<th>Port Number</th>
<th>RTS</th>
<th>+5V</th>
<th>Name</th>
<th>Protocol</th>
<th>Command Port Data</th>
<th>Test Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #1</td>
<td>K</td>
<td>No</td>
<td>Series V to Master</td>
<td>Series V</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #2</td>
<td>K</td>
<td>No</td>
<td>Port 2</td>
<td>DNPM</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #3</td>
<td>K</td>
<td>No</td>
<td>Port 3</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #4</td>
<td>K</td>
<td>No</td>
<td>Port 4</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #5</td>
<td>K</td>
<td>No</td>
<td>Port 5</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #6</td>
<td>K</td>
<td>No</td>
<td>Port 6</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #7</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Port #8</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Port #9</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Port #10</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Port #11</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Port #12</td>
<td>K</td>
<td>No</td>
<td>Port 12</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #13</td>
<td>K</td>
<td>No</td>
<td>Port 13</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #14</td>
<td>K</td>
<td>No</td>
<td>Port 14</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #15</td>
<td>K</td>
<td>No</td>
<td>Port 15</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
<tr>
<td>Port #16</td>
<td>K</td>
<td>No</td>
<td>Port 16</td>
<td>None</td>
<td>Port Data</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Use a jumper between pins 2 & 3 as shown in Figure 4-3 to get the values shown in the Figure.

Figure 4-3 Comm Port Test

Note: A protocol must be assigned to the port undergoing Port Test

While doing the Port Test, the LEDs on the front panel will light according to the following table.

<table>
<thead>
<tr>
<th>Test Mode Function</th>
<th>Front Panel LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>All LEDs OFF</td>
</tr>
<tr>
<td>Mark</td>
<td>RTS ON</td>
</tr>
<tr>
<td>Space</td>
<td>TX, RX, & RTS ON</td>
</tr>
<tr>
<td>Alt</td>
<td>Same as Space, but TX & RX dimmer</td>
</tr>
</tbody>
</table>
4.2 Troubleshooting

This section includes a brief guide to troubleshooting some of the more common problems that could occur in the SAGE 3030X. If you are troubleshooting to the component level, the use of the Theory of Operation chapter and the Drawings chapter will be helpful.

4.2.1 LED Display

The LEDs on the front panel are a prime troubleshooting aid. Below is a typical example of the LED activity.

Figure 4-4 Front Panel LEDs

<table>
<thead>
<tr>
<th>COMM PORTS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>CON</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD/+5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>RX</td>
<td>○</td>
</tr>
<tr>
<td>RTS</td>
<td>○</td>
</tr>
<tr>
<td>CTS</td>
<td>○</td>
</tr>
<tr>
<td>TX</td>
<td>○</td>
</tr>
</tbody>
</table>

- POWER
- TIME SOURCE FAILED
- USER LOGGED IN
- RUN
- IED FAILED
- CONFIG CHANGED
- RESET
- ALARM 1
- RLL RUNNING
- LOCAL
- ALARM 2
- ETHERNET LINK

There is a set of Comm lights for every serial port, including the Console and the PPP ports. The lights have the following meanings.

DCD/+5V
Dual meaning: DCD (Data Carrier Detect) in, or +5V out. Write as required.

RX
Receive. This hardware driven LED indicates activity on the Receive pin (pin 2) of this port’s RS232 connector.

RTS
Request To Send. This hardware driven LED indicates activity on the Request to Send pin (pin 7) of this port’s RS232 connector.

CTS
Clear To Send. This hardware driven LED indicates activity on the Clear to Send pin (pin 8) of this port’s RS232 connector.

TX
Transmit. This hardware driven LED indicates activity on the TX pin (pin 3) of this port’s RS232 connector.

The LEDs beneath the Comm lights show conditions for many other functions in the 3030X.

POWER
This hardware driven LED indicates whether or not the 3030X has power. Normally on.
RUN
This software driven LED indicates whether or not the 3030X CPU is running. Look for the signature “heartbeat”; that is, a fast blink. A “steady ON” light means the 3030X is in either Safe mode or Crash Recovery mode. No light means the CPU is not running. Normally blinking.

RESET
This hardware driven LED illuminates while the the unit’s reset signal is asserted. Normally off.

LOCAL
Local control. This software driven LED indicates the position of the Local/Remote switch. In Local, all hardware and IED control functions are disabled. Normally off.

TIME SOURCE FAILED
This software driven LED indicates that one or more of the configured time sources are in a failed state. Normally off.

IED FAILED
This software driven LED indicates that one or more of the configured IEDs is in a failed communications state. Normally off.

ALARM 1
This hardware driven LED indicates that the Alarm 1 relay has been energized. Normally off.

ALARM 2
This hardware driven LED indicates that the Alarm 2 relay has been energized. Normally off.

USER LOGGED IN
This software driven LED indicates that one or more user sessions is currently active. Normally off.

CONFIG CHANGED
This software driven LED indicates that a configuration XML file has been sent to the 3030X and the 3030X has not yet been reset making the new XML file active. Normally off.

RLL RUNNING
This software driven LED indicates that an ISaGRAF RLL program has been downloaded into the RTU and is currently active. Caution should be taken in that control operations may occur without notice depending on the functions built into the RLL program. Normally off.

ETHERNET LINK
This software driven LED indicates that the Ethernet circuit located on the CPU card has detected a valid link to another Ethernet device.

Note: If the optional Switched Ethernet PC/104 card is installed, the Ethernet Link indication will always show a valid Ethernet connection.

4.2.2 Data Display
You can use the Data Display Menu to monitor the operation of input and output devices. The Data Display can be compared to the LEDs as a means of status verification.

4.3 Analog Input Calibration (Optional C3830 Card)
The analog input card has a simple calibration technique that is intended for use while the RTU is operating on-site. The RTU has two dedicated internal references that provide 5V and 4.5V, which are used to calibrate the A/D. Since the RTU is generating these references, only a precision voltmeter and a small
A screwdriver is required to perform the calibration. See the figure below to locate adjustments and test points.

1. Connect the voltmeter between TP3 (analog ground) and TP1 (5V reference).
2. Adjust potentiometer R4 until the meter indicates 5.000 Volts ±0.001V.
3. Connect the voltmeter between TP3 (analog ground) and TP2 (4.5V reference).
4. Adjust potentiometer R5 until the meter indicates 4.500 Volts ±0.001V.

This ensures the internal ±100% and ±90% reference points are accurate.

![C3830 PC/104 AI Card](image)

4.4 Temperature Calibration (Optional AI Card)

The References Configuration screen allows you to set the temperature units (°F or °C) and correct the temperature reading. This step should not be done remotely because you must enter the current correct
temperature at the RTU. See below. Click Submit when you are satisfied with the configuration, or Cancel to back out of the function without saving.

Figure 4-6 References Configuration

<table>
<thead>
<tr>
<th>Point</th>
<th>Point Name</th>
<th>Units</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bb_gnd_ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>bb+_5.0V_REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>bb+_4.5V_ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>bb-_4.5V_ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>bb_temp_ref</td>
<td>°F</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>bb_dc_in</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.5 Jumper Positions, C3461 PC/104 GPS Card

Figure 4-7 Jumper Positions, C3461 PC/104 GPS Card
Chapter 5 - Theory of Operation

5 Theory of Operation

This section provides detailed technical design information on the SAGE 3030X and its various external modules, including design of the firmware and hardware. Use this chapter if you want to troubleshoot and repair to component-level on the modules. This section is based on the simplified block diagrams included with the text.

Use the schematic drawings and printed circuit assembly drawings in the Drawings chapter of this manual for a more detailed study.

5.1 Basic Architecture

The SAGE 3030X uses the PC104 interface for its CPU interface. This makes it easy to upgrade your device as application needs change. The I/O complement is fixed. However, its 16+ communication ports, coupled with a large suite of IED protocols, allow concentration of many types of data from down-stream devices.

5.1.1 PC/104 Architecture

The open architecture of the PC/104 bus interface provides for expanded functions. You may add a PC/104-based GPS receiver.

The PC/104 architecture is a compact version of the IEEE P996 (PC and PC/AT) bus, optimized for the unique requirements of embedded systems applications. The PC/104 bus derives its name from the 104 signal contacts on the two bus connectors (64 pins on P1, plus 40 pins on P2). The main differences from the IEEE P996 are:

1. Reduced form-factor (3.550 x 3.775 inches)
2. Self-stacking, eliminating need for backplanes or card cages
3. Minimized component count and power consumption (typically 1-2 watts per module) and reduced bus drive requirement (typically 4 mA)

5.2 SAGE 3030X Microprocessor Overview

Please refer to the CPU Manual.
5.3 Hardware Design

5.3.1 LEDs

The LEDs on the front panel are a prime troubleshooting aid. Below is a typical example of the LED activity.

Figure 5-1 Front Panel LEDs

<table>
<thead>
<tr>
<th>COMM PORTS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>CON</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD/+5V</td>
<td>o</td>
</tr>
<tr>
<td>RX</td>
<td>o</td>
</tr>
<tr>
<td>RTS</td>
<td>o</td>
</tr>
<tr>
<td>CTS</td>
<td>o</td>
</tr>
<tr>
<td>TX</td>
<td>o</td>
</tr>
</tbody>
</table>

- **POWER**: This hardware driven LED indicates whether or not the 3030X has power. Normally on.
- **TIME SOURCE FAILED**: This LED indicates if the time source failed.
- **USER LOGGED IN**: Indicates if a user is logged in.
- **RUN**: This LED indicates activity on the Receive pin (pin 2) of this port’s RS232 connector.
- **IED FAILED**: Indicates if the IED failed.
- **CONFIG CHANGED**: Indicates if the configuration changed.
- **RX**: Receive. This hardware driven LED indicates activity on the Request to Send pin (pin 7) of this port’s RS232 connector.
- **ALARM 1**: Indicates if an alarm is active.
- **ALARM 2**: Indicates if an alarm is active.
- **ETHERNET LINK**: Indicates if the Ethernet link is active.
- **RESET**: Indicates if the device is in reset mode.
- **LOCAL**: Indicates if the device is in local mode.
- **TX**: Transmit. This hardware driven LED indicates activity on the TX pin (pin 3) of this port’s RS232 connector.

The lower LEDs show conditions for many other functions in the 3030X.
This software driven LED indicates whether or not the 3030X CPU is running. Look for the signature “heartbeat”; that is, a one-second blink. If this light is not blinking (that is, either steady ON or steady OFF), the CPU is either in Safe mode, Crash Recovery mode, or is not running. Normally blinking.

RESET
This hardware driven LED illuminates while the the unit’s reset signal is asserted. Normally off.

LOCAL
This software driven LED indicates the position of the Local/Remote switch. In Local, all hardware and IED control functions are disabled. Normally off.

TIME SOURCE FAILED
This software driven LED indicates that one or more of the configured time sources are in a failed state. Normally off.

IED FAILED
This software driven LED indicates that one or more of the configured IEDs is in a failed communications state. Normally off.

ALARM 1
This hardware driven LED indicates that the Alarm 1 relay has been energized. Normally off.

ALARM 2
This hardware driven LED indicates that the Alarm 2 relay has been energized. Normally off.

USER LOGGED IN
This software driven LED indicates that one or more user sessions is currently active. Normally off.

CONFIG CHANGED
This software driven LED indicates that a configuration XML file has been sent to the 3030X and the 3030X has not yet been reset making the new XML file active. Normally off.

RLL RUNNING
This software driven LED indicates that an ISaGRAF RLL program has been downloaded into the RTU and is currently active. Caution should be taken in that control operations may occur without notice depending on the functions built into the RLL program. Normally off.

ETHERNET LINK
This software driven LED indicates that the Ethernet circuit located on the CPU card has detected a valid link to another Ethernet device.

5.3.2 PC/104 Bus Interface/Connector

The bus interface connector is compatible with the PC/104 Consortium specification.

Contact the Consortium at:

PC/104 Consortium
849 Independence Ave., Suite B
Mountain View, CA 94043
Phone: 650.903.8304
Fax: 650.967.0995
Email: info@pc104.org

The PC/104 standard is available on the web in downloadable PDF format at:

URL: http://www.pc104.org
5.3.3 Communication Ports

The SAGE 3030X has sixteen (16) RS232 communications ports complete with LEDs for positive visual indication of data activity, and two other RS232 ports for Console and PPP. Baud rates are individually selected by port for rates between 300 baud and the maximum baud rate allowed by the protocol. The Console port is dedicated at 9600 baud.

Additionally, the 3030X can have up to five 10/100MBit Ethernet ports, depending on the variance. All ports are capable of supporting synchronous and asynchronous protocols and in synchronous modes can receive both the TX and RX clocks to support their data.

All RS232 communication ports share a common interrupt and receive a 14.7458 MHz clock. The internal clock gives them the ability to receive and transmit data at up to 115.2 K.

5.3.4 Power Input

The power requirements of the SAGE 3030X depend on the variance. The two choices are: 85-350VDC and 85-264VAC universal supply, or 12-60VDC.
5.3.5 C3461 PC/104 Trimble GPS Receiver

The C3461 PC/104 Trimble GPS receiver consists of two boards; a PC/104 carrier card (SATPAK-104), with a Trimble GPS receiver riding piggy-back. See Figure 5-2.

Figure 5-2 C3461 Board Layout

The SATPAK-104 communicates with the GPS receiver through a 16550 universal asynchronous receiver/transmitter (UART). The UART converts the serial TTL data required by the GPS receiver to parallel data required by the PC/104 protocol. Simple push-on jumpers are used to configure the SATPAK-104 for standard input/output base addresses (COM1, COM2, COM3, COM4) and any of the available bus interrupt lines (IRQ3-IRQ7, IRQ10-IRQ12, IRQ14, or IRQ15). The J2 pass-through connector option must be installed to access interrupt request signals IRQ10-IRQ12, IRQ14, and IRQ15. Custom programmable logic is available if the user must decode base addresses other than those supported by the standard serial communication addresses. The SATPAK-104 also provides signal level conditioning for RTCM-104 serial differential correction signals (RS232 or RS422), and a large value 1 Farad capacitor to maintain the almanac, ephemeris, and real-time clock of the GPS receiver after power is removed. The GPS receiver is protected with a thermally resettable fuse in line with the +5V power to the GPS receiver. The 1PPS signal from the GPS receiver is available on connector P3 located on the SATPAK-104.
The overall block diagram for the PC/104-Trimble receiver combination is shown in Figure 5-3.

Figure 5-3 GPS Receiver Block Diagram

5.4 Select Before Operate

The SBO interface uses 8 source drivers (U57) and 16 sink drivers (U51, U54). The source drivers can only be selected one at a time. A serial-in, parallel-out shift register feeds the 16 sink drivers, and allows all the sink drivers to be asserted simultaneously if desired.

All drivers have feedback resistor networks which allow the SAGE 3030X to monitor correct relay driver selection before execution is enabled. The SBOs are controlled by an Erasable Programmable Logic Device (EPLD). The sink drivers control the CSEL0 - CSEL15 lines. The source drivers control CEXEC0 – CEXEC7.

The relay driver matrix (16 X 8) can handle a maximum of 64 SBO points. Each SBO consists of a TRIP and a CLOSE relay. SBOs are limited to one at a time by hardware and firmware.
Another view of SBO addressing is shown in Figure 5-5.

Figure 5-5 SBO Matrix
5.5 **Digital Input Expansion**

The digital input subsystem accepts contact closure inputs as field status or low speed accumulator inputs. All inputs are optically isolated, and debounced by the firmware. Input processing is determined by the input assignment as status or accumulator, and is also firmware controlled. This allows the same hardware to be used for both types of inputs. Figure 5-6 is a simplified schematic of a typical digital input on an XT.

The baseboard digital inputs are organized in 2 banks of 8 bits. The baseboard digital inputs are interfaced to the data bus D7-D0 to DI-7 by U2 and U3. Data is allowed to settle before data onto the bus is read. A new status bank is selected by reading the I/O address of the requested status bank, ignoring the data, reading the same I/O address again, then processing the data.

![Figure 5-6 Typical Digital Input](image)

5.5.1 Firmware Debounce Algorithm

The Digital Inputs are processed through a digital filter to prevent erroneous Changes Of State (COS) being reported because of contact bounce. The inputs are sampled each 5 msec. Any input that does not match the state of the previous scan is time stamped and stored as a possible COS. A 20 msec counter is started for the suspect input. When the 20 msec expires, the point is again sampled. If it has remained steady it is considered to be a valid COS. The COS flag is set and the status buffer is set to the new point condition. A hardware RC network on each digital input provides additional filtering.

5.6 **Analog Input Expansion**

The analog expansion capabilities are implemented through a C3830 PC/104 card that supports the analog bus. A ribbon cable from this bus then connects to a choice of analog XT cards that will support up to 256 analog XT points in total.

The C3830 must be stacked below the CPU card as shown.
Figure 5-7 PC/104 Board Stacking

- CPU
- AI Card
- GPS
- ETHERNET
- BASEBOARD
6 Appendix

The following schematic and assembly drawings are included in this manual as a convenience to allow for troubleshooting.

For a full set of 3030M drawings, download them from here. [3030M Drawings]

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Revision</th>
<th>Description</th>
<th># of pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3030-000-XXXXX</td>
<td>D</td>
<td>SAGE 3030 Assembly, 19” Rack Mounting</td>
<td>4 pages</td>
</tr>
<tr>
<td>S3030-M00-XXXXX</td>
<td>0</td>
<td>SAGE 3030 MAGNUM Assembly, 19” Rack Mounting</td>
<td>4 pages</td>
</tr>
<tr>
<td>C3800-000-00001</td>
<td>G</td>
<td>Assembly, PCA SAGE 3030, Substation Automation Platform</td>
<td>2 pages</td>
</tr>
<tr>
<td>C3800-002-REV-C</td>
<td>C</td>
<td>Schematic, Substation Automation Platform</td>
<td>8 pages</td>
</tr>
<tr>
<td>C3800-002-PLDA1</td>
<td>A</td>
<td>CSPLD_U44</td>
<td>1 page</td>
</tr>
<tr>
<td>C3800-002-PLDA2</td>
<td>A</td>
<td>COMMPLD_U30</td>
<td>1 page</td>
</tr>
<tr>
<td>C3800-002-PLDA3</td>
<td>A</td>
<td>PIC_PLD_U39</td>
<td>1 page</td>
</tr>
<tr>
<td>C3800-002-PLDA4</td>
<td>A</td>
<td>STATUS_U50</td>
<td>1 page</td>
</tr>
<tr>
<td>C3800-002-PLDA5</td>
<td>A</td>
<td>SBOPLD</td>
<td>3 pages</td>
</tr>
<tr>
<td>C3820-000-00001</td>
<td>B</td>
<td>Assembly, PCA S3030 Display Board</td>
<td>1 page</td>
</tr>
<tr>
<td>C3820-002-REV-B</td>
<td>A</td>
<td>Schematic, LED Display Board</td>
<td>2 pages</td>
</tr>
<tr>
<td>C3800-CB1-00001</td>
<td>B</td>
<td>Cable Assy for SAGE 3030 Power Input & Power Distribution</td>
<td>1 page</td>
</tr>
<tr>
<td>C3830-000-00001</td>
<td>F</td>
<td>PC104 Analog/Digital Input Module Assy</td>
<td>1 page</td>
</tr>
<tr>
<td>C3830-002-PLDC1</td>
<td>C</td>
<td>Analog Module EPLD</td>
<td>1 page</td>
</tr>
<tr>
<td>C3830-002-REV-C</td>
<td>C</td>
<td>PC104 Analog / Digital Input Module Schematic</td>
<td>1 page</td>
</tr>
<tr>
<td>C3830-525-PLDX1</td>
<td>B</td>
<td>ICL EPLD Program for EPM7064S</td>
<td>1 page</td>
</tr>
</tbody>
</table>