

Config@WEB RTU to IED Protocols Manual

S2200-AAA-00004 V6.5

Schneider Electric North America Headquarters 1415 South Roselle Road Palatine, IL 60067

Phone: 1-847-397-2600 Fax: 1-847-925-7500 Schneider Electric 14400 Hollister St., Suite #400 Houston, TX 77066-5706

Phone:1-713-920-6800Fax:1-713-920-6909E-mail:sagesupport@schneider-electric.com

Config@WEB RTU to IED Protocols Manual

For Reference Only

© Copyright 2014 by Schneider Electric

The information contained in this document is confidential and proprietary to Schneider Electric . It is not to be copied or disclosed for any purpose except as specifically authorized in writing by Schneider Electric . Although the information contained herein was correct and verified at the time of publication, it is subject to change without notice.

Manual No. S2200-AAA-00004

Rev	Date	Description	ECO#	Review Approval
0.0	08-17-04	Initial Release - RTU to IED protocols were originally part of S2200-AAA-	N/A	
		00002		
1.0	12-07-04	Update to SEL protocol	11504	
2.0	08-17-06	Added S5 (M), Symax, L&N C2100H(M), improved comm. counters &	11595	
		Internal Indications to DNPM, ANA & ACC bit sizes to Transdata, updated		
		screen dumps, spun-off DNP Device Profile to separate manual (C3413-		
		AAA-DNP01)		
3.0	03-12-07	Updated for C9 firmware	11634	
4.0	08-06-07	Updated for CA_P2 firmware	11673	
5.0	06-02-08	Updated for CD firmware	11713	
6.0	10-13-08	Updated for D0 firmware	11750	
6.1	04-28-09	Updated for D2 firmware	11787	
6.2	12-09-11	Modified description of Time Sync Interval for DNPM		
		Modified description of DNPM Direct Operate Control Functions,		
		Added screenshot and description of "Short Messages" counter for		
		Series V Data Display, Added Secure Authentication to DNPM		
6.3	10-04-12	Updated screenshots, general cleanup	N/A	
6.4	01-13-14	Update to Secure Firmware	N/A	
6.5	10-13-14	Scan Type 6	N/A	
				Dan Stark,
				Manager, RTU S/W
				Engineering

1 Introduction

The Telvent RTUs that use the Config@WEB interface have built-in point mapping. Point mapping is used on the output comm port, that is, the comm port reporting to a Master, whether that Master is another RTU or a central Master Station.

Your Config@WEB configuration should follow this sequence:

Configure Hardware I/O

Configure IEDs

Configure Master Station interface ports

This manual concerns itself with the second item.

1.1 **Communication Port Configuration**

With the release of Application version S2200-500-001A6, the DNP protocol is now available over Ethernet. TCP/IP Ethernet supports multiple logical channels over a single physical wire. This means that the Config@WEB interface is totally available at the same time that the Ethernet port is being used for up to sixteen independent DNP sockets.

Additionally, you may also operate DNP (or any other supported protocol) over all serial comm ports. Both Serial Comm operation and Ethernet Comm operation are explained in the following chapters.

1.2 **Communications Timers**

Telvent microprocessor based RTUs use timers for communications. These timers are CTS Delay, RX Timeout, B4 Time, InterByte Time, and Modem TurnOff Time. Each of the timers and their normal uses are described below. Calculation of the communications timer values are dependent on the baud rate selected, the result of other communication timer values and the mode in which the serial device is used.

1.2.1 Timer Calculations

The timer values are calculated in the following order: InterByte Time, CTS Delay, Modem TurnOff Time, and B4 Time.

InterByte Time (1ms)

The InterByte time is the maximum time allowed between consecutive bytes of a message. This timer is started at the receipt of each byte of the transmission from the MTU to the RTU. The entire message will be discarded if the timer expires between two bytes of a message. The timer value is entered in 1ms increments and has a resolution of 5ms in the RTU.

If a value of 0 (the default) is entered, the timer value will be calculated based on the baud rate using the following formula:

InterByte Time Timer = the greater of 2 or ((14,400/baud rate+1) + 4)/5 + 1

This formula results in a quantity of 5ms ticks. For example, if the baud rate is 1200 baud, the timer would be calculated as ((14,400/1200) + 5)/5 + 1 resulting in a 4 tick timer. A four tick timer results in an actual time of from between 15 and 20 milliseconds since the tick timer begins asynchronously from the actual 5ms interrupt.

If a non-zero value is entered, the 1ms value entered will be rounded up to the nearest number of 5ms ticks plus 1. The formula used is:

InterByte Time Timer = (value entered + 4)/5 + 1

If a value of 1 were entered, the timer would be calculated as (1 + 4)/5 + 1 resulting in a 2 tick timer. A two tick timer results in an actual time of from between 5 and 10 milliseconds since the tick timer begins asynchronously from the actual 5ms interrupt.

Each byte of the MTU to RTU message may be qualified with the hardware DCD option if the modem being used supports this signal. If the DCD input is unasserted when a byte is received, the byte will be discarded.

CTS Delay (1ms) (Clear To Send)

The CTS Delay timer is the delay from the end of the MTU message reception to the start of RTU message transmission. This timer is started when the RTU has received a message from the MTU that requires a response by the RTU and after the RTU has built the response message. When this timer is started, the RTS & DTR pins of the port will be asserted. The Clear To Send timer is used as displayed on the screen for the protocol. This timer is entered in 1ms increments and has a resolution of 1ms in the RTU. If the Hardware CTS option is not enabled (the default), the RTU firmware will wait the CTS Delay period before transmitting its response to the MTU. If the Hardware CTS option is enabled, the RTU firmware will wait the CTS Delay period before checking the state of the CTS input. If the CTS pin is not asserted, the RTU firmware will check each millisecond until the signal is asserted, and at that time the RTU will transmit its response to the MTU.

Modem TurnOff Time (1ms)

The Modem TurnOff Time timer is the time the Modem is left on after completion of RTU message transmission. This timer is entered in 1ms increments and has a resolution of 1ms in the RTU. This timer is started when the RTU has transmitted the last byte of a message. When this timer expires, the RTS and DTR pins of the port will be deasserted.

If a value of 0 (the default) is entered and the setting for the CTS Delay is non-zero, the timer value will be calculated based on the baud rate using the following formula:

Modem TurnOff Time Timer = the greater of 2 or (14,400/baud rate) + 1

This formula results in a quantity of 1ms ticks. For example, if the baud rate is 1200 baud, the timer would be calculated as ((14,400/1200) + 1 resulting in a 13 tick timer. A thirteen tick timer results in an actual time of from between 12 and 13 milliseconds since the tick timer begins asynchronously from the actual 1ms interrupt. If a value of 0 (the default) is entered and the setting for the CTS Delay is zero, the timer value will be set to zero.

If a non-zero value is entered, the 1ms value entered will be the number of 1ms ticks used. If a value of 3 were entered, the timer would be a 3 tick timer. A three tick timer results in an actual time of from between 2 and 3 milliseconds since the tick timer begins asynchronously from the actual 1ms interrupt.

If a MTO value of 7 were entered and the baud rate were set to 2400, the timer would be a 15 tick timer. A fifteen tick timer results in an actual time of from between 14 and 15.

B4 Time (1ms)

The B4 Time timer is the amount of time the RTU listens for a dead receive line prior to enabling the receiver and accepting a new message. This timer is started at the end of each transmission from the RTU to the MTU. The timer must expire prior to a new message being accepted from the MTU. If any bytes of a message are received by the RTU prior to the time expiring, they will be discarded and the B4 timer restarted. This timer is entered in 1ms increments and has a resolution of 5ms in the RTU.

If a non-zero value is entered, the 1ms value entered will be rounded up to the nearest number of 5ms ticks plus 1. The formula would then appear as:

B4 Time Timer = (value entered + 4)/5 + 1

6

If a value of 10 were entered, the timer would be calculated as (10 + 4)/5 + 1 resulting in a 3 tick timer. A three tick timer results in an actual time of from between 10 and 15 milliseconds since the tick timer begins asynchronously from the actual 5ms interrupt.

If a value of 0 is entered, the timer value will be calculated based on the modem turnoff time using the following formula:

B4 Time Timer = ((the greater of (MTO/2)*5 or 10) + 4)/5 + 1

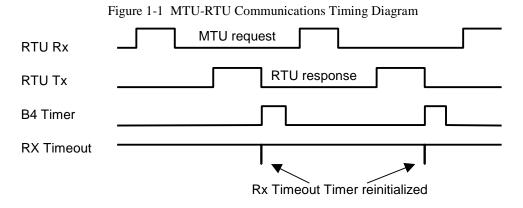
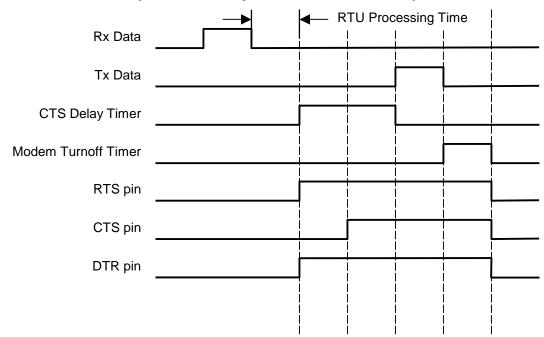
This formula results in a quantity of 5ms ticks. For example, if the MTO delay is 2, the timer would be calculated as ((10) + 4)/5 + 1 resulting in a 3 tick timer. A three tick timer results in an actual time of from between 10 and 15 milliseconds since the tick timer begins asynchronously from the actual 5ms interrupt.

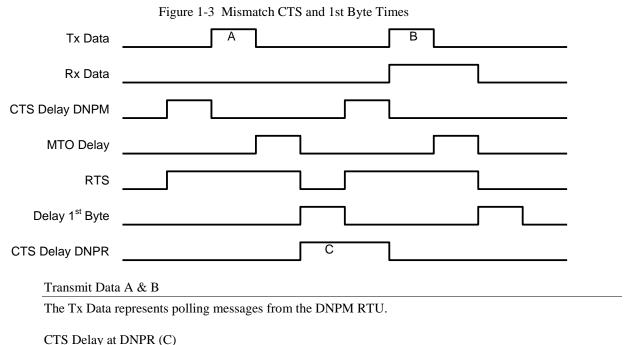
RX Timeout (16.67ms)

The RX Timeout timer is the amount of time the RTU receiver waits to hear valid communications from the MTU. This timer is started at the end of each transmission from the RTU to the MTU. If no bytes of a message are received by the RTU prior to the timer expiring, the USART of the port will be be initialized. This timer is entered in 1ms ticks and has a resolution of 16.67ms in the RTU. An entry of 5000ms results in an actual time between 5.183 and 5.200 seconds because the tick timer begins asynchronously from the actual 16.67ms interrupt.

1.3 **Timing Diagrams**

Figure 1-1 represents request-response cycles between an MTU and an RTU. Figure 1-2 shows an expanded single request-response cycle including the additional RTU signal timing.

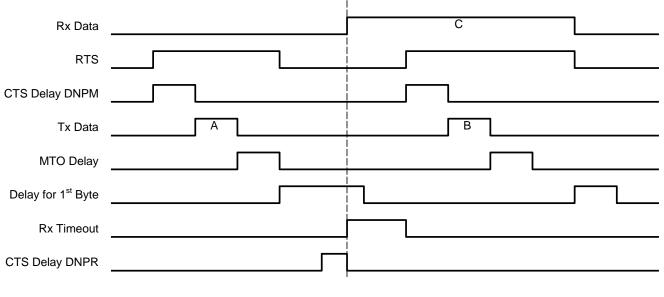



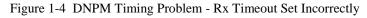

Figure 1-2 DNPR Expanded Communications Timing

1.4 **DNP Timing Problem Examples**

CTS Delay Too Long 1.4.1

Common timing problems arise when there are mismatches between the selected timer values. Some of these are illustrated in the following diagrams:




The CTS delay time is set too long or the Delay 1st Byte is set too short.

The mismatch between the DNPR CTS and Delay for 1st Byte causes the DNPM to never hear the DNPR transmission. The defaults set in the PROM may not be appropriate for every communications media. This problem is indicated by rapid polling by the DNPM. It is the purpose for the Delay 1st Byte timer to allow rapid, efficient polling.

1.4.2 Rx Timer Too Short

The DNPR CTS Delay (See Figure 1-4) is properly set since the first byte is received before the Delay for 1st Byte timer expires.

Transmit Data A & B

The Tx Data represents polling messages from the DNPM RTU.

Rx Data (C)

The DNPR data transmission (C) starts properly but the RX timeout timer at the DNPM cuts it short. This causes the DNPM to transmit a poll request (B) even while the DNPR is still responding to the first poll request (A).

1.5 Secure Authentication

DNPM now supports Secure Authentication. See the DNPM chapter.

2 DNPM

2.1 Telvent DNP Scan Types (0-5)

The various "Scan Types" available are to ensure interoperability with various vendor's DNP 3.0 implementations. Typically the only scan types that are used in most instances are:

- 1. Scan Type 0: Poll static data. Use for Meters and other devices that do NOT have time stamped event data.
- 2. Scan Type 2: Poll event data followed by configurable integrity scan. Use for Relays, Switches and other devices that have time stamped event type data.

A more detailed explanation of the scan types follows.

- Scan Type 0: Typically used for meter data or other non-event polling.
 - Regular scan Class 0
- Scan Type 1: Obsolete scan type which assigns class (used for older Telvent RTUs). Most IEDs do not support this scan type. Use Scan Type 2 in place of this one.
 - Startup:
 - Assign class for binary objects
 - Assign class for analog objects
 - Freeze/Read ACCs as configured
 - Read running ACCs as configured
 - Integrity scan as configured
 - o static DI
 - static AI
 - o static AO
 - Regular scan Class 1,2
- Scan Type 2: Typically used to poll relays and other IEDs which have event type data.
 - Startup:
 - o Class 0 Scan
 - Freeze/Read ACCs as configured
 - Read running ACCs as configured
 - Integrity scan as configured
 - o Class 0 scan
 - Regular scan Class 1,2,3 scan
- Scan Type 3: Specialized scan type is not typically used but is designed to limit the quantity of data returned in a poll.
 - Scan object 30 (AIs)
 - Scan object 40 (AOs)
 - Scan object 1 (DIs)
 - Scan object 20 (ACCs)

- Scan Type 4: Specialized scan type is not typically used but is designed to limit the quantity of data returned in a poll.
 - Range read on ACC
 - Range read on DI
 - Range read on AO
 - Range read on AI
 - Status event read
- Scan Type 5: Specialized scan used to poll an IED only when the configured "Scan Type 5 Status Input" point gets set to 1. When set, the RTU will send a Class 0 scan to the IED and resets the status point to 0. There are not checks or retries to guarantee the poll was sent or received correctly. Controls are sent to the IED when needed regardless of the status point. No other scans are sent to the RTU until another status change is detected.
- Scan Type 6: Same as Scan Type 2, except the Integrity Scan is Class 1/2/3/0. This will eliminate potential double status changes for when for long time between settings. In Scan Type 2, the Integrity Scan only sends Class 0.

2.2 Secure Authentication Theory

Under section "**2.7.13.1 IED Name & Authentication Configuration**" is a feature called Secure Authentication Configuration. This feature allows secure communication with an IED that supports Authentication. The following quote is the description from the DNP Secure Authentication documentation.

"The Session Keys that each device uses to hash the challenge data are the most frequently used keys. A different Session Key is used in each direction, so that if the key for one direction is compromised, it does not compromise communications in the other direction. There is a different set of Session Keys and a different Update Key for each user at the master end, identified by a User Number.

The master initializes the Session Keys immediately after communications is established and regularly changes the Session Keys thereafter. This practice of periodically changing the Session Keys protects them from being compromised through analysis of the communications link.

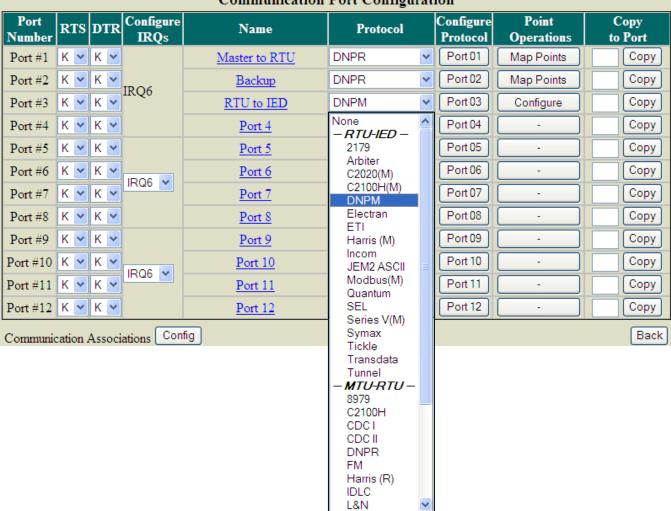
The master uses a second key, called the Update Key, to encrypt the new Session Keys, together with the challenge data, inside a Key Change message. The use of a second key permits the master to change the Session Key even if the original Session Key was compromised. Both the Session Keys and the Update Key are symmetric keys.

Outstations shall consider all output operations (controls, setpoint adjustments, parameter settings, etc.) to be critical. Other mandatory critical operations are described in 7.5.2.3.2. Each implementation may define additional mandatory critical operations.

To protect against replay attacks, the challenge message contains data that changes randomly each time a challenge is issued.

2.2.1 Aggressive Mode

To reduce bandwidth usage, a responder attempting a critical operation may optionally "anticipate" the challenge and send the MAC Value in the same ASDU being protected. This practice is known as "aggressive mode". It eliminates the challenge and reply messages."


2.3 Serial Comm Port Configuration

DNPM is a protocol that communicates between the RTU and an IED.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click DNPM from the Protocol drop-down menu as shown.

Figure 2-1	DNPM	Communication	Port	Configuration
------------	------	---------------	------	---------------

Communication Port Configuration

2.3.1 Port Number

Physical Port number of the RTU.

2.3.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

2.3.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

2.3.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

2.3.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

2.3.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name								
Name Port	1							
	Cancel	Submit						

2.3.4 Protocol

From the drop-down list, select the protocol for this port.

2.3.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

2.3.6 Point Operations

Click this button to assign points.

2.3.7 Copy to Port

Enter a port number to copy to, then click the Copy button.

Navigation

Click the Back button to return to the previous screen.

2.3.7.1 Communication Associations

Please see the DNPR chapter of the Config@WEB Protocols-MTU-RTU manual.

2.4 Configure Protocol, Serial Comm

Under the heading Configure Protocol, click Port *n* to configure the DNPM port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Figure 2-2 DNPM Communication Channel Configuration	Figure 2-2	DNPM Comm	nunication Ch	nannel Cont	figuration
---	------------	-----------	---------------	-------------	------------

DNPM RTU Communication Channel Configuration

Port # : 16 Port Name : Port 16								
Data Link Para	meters	Scanner Application Parameters						
Baud Rate *	9600 💌	Number of IEDs	1					
Parity *	None 🚩	Receive time-out	5000 (ms)					
CTS Delay *	20 (ms)	Maximum com error count	3					
MTO Timout *	0 (ms)	Scanner Application Retries	0					
Rx Timeout *	5000 (ms)	Integrity scan interval	15 (sec)					
Delay for First Byte *	2000 (ms)	Time sync interval	15 (sec)					
Interbyte Time *	55 (ms)	Accumulator freeze time 1	3600 (sec)					
Hardware CTS	⊙No ⊖Yes	Accumulator freeze time 2	-1 (sec)					
Hardware DCD	⊙No ⊖Yes	Accumulator freeze time 3	-1 (sec)					
Half Duplex	⊙No ⊖Yes	Accumulator freeze time 4	-1 (sec)					
Message S	etup	Frozen accum. read time	60 (sec)					
Master RTU Address	65519	Running counters read interval	15 (sec)					
Ack Frame Timeout	5000 (ms)	Fast Scan Cycles	15					
Number of Frame Retries	0	Time Between Messages	250 (ms)					
		Time Format	● Local ○ UTC					
Default: 0.		Ca	ncel Submit					
Range: 0 to 40.								

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

2.4.1 Data Link Parameters

2.4.2 Baud Rate (300-38400)

From the drop-down menu, select the baud rate. The default setting is 9600.

2.4.3 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is None.

14

2.4.4 CTS Delay (0 to 1000ms)

Enter the clear-to-send delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. Valid entries are in the range of 0-1000 msec. The default setting is 20.

2.4.5 MTO Timeout (0 to 250ms)

Enter the Modem Turnoff Delay for the associated channel. The MTO Delay is used to designate the amount of time (in milliseconds) that will elapse after the last byte is transmitted before the modem is turned off. The default setting is 0 ms.

2.4.6 Rx Timeout (0 to 60,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. Valid entries are in the range of 0-60000. The default setting is 5000ms (5 sec).

Note: This timer must be <u>greater</u> than Delay for First Byte timer (below).

2.4.7 Delay for First Byte (1ms) (0 to 60,000)

Enter the delay time for the associated channel. This is the time allowed for a Slave Device to begin its response before the RTU assumes it is not going to reply and moves on to the next device. This parameter is typically set long because of delays in IED response. Valid entries are in the range of 0-60,000 msec. The default setting is 2000 (2 sec).

Note: This timer must be <u>less</u> than Rx Timeout (above).

2.4.8 Inter-byte time (0 to 30,000ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. Valid values range from 0-30,000 milliseconds. The default setting is 55 msec.

2.4.9 Hardware CTS (No, Yes)

Click the radio button for Yes if you want the Hardware Clear-To-Send option selected. When this option is selected, the IEDs will not be polled unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. If no hardware CTS signal is present, the port aborts the transmission and tries again. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. The default setting is No.

2.4.10 Hardware DCD (No, Yes)

Click the radio button for Yes if you want the Hardware DCD selected. When this option is selected, the channel communications driver will accept requested message data bytes only if the carrier is detected by the modem. If the carrier is not detected, the data bytes are discarded. The default setting is No.

2.4.11 Half Duplex (No, Yes)

Click the radio button for Yes if you want half duplex operation. This function enables the RTU to properly condition the RS-232 control lines. The CTS delay is used for carrier conditioning. In full duplex operation, the CTS signal is used for collision avoidance. In Half duplex operation, the DCD signal is used for collision avoidance and to enable the receiver. The default setting is No.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.4.12 Message Setup

2.4.13 Master RTU Address (0 to 65534)

This address is a unique address on the assigned communications channel of the polling RTU. Address 65535 is used only to broadcast to all stations by the MTU. Default is 65519.

2.4.14 Ack Frame Timeout (0 to 60,000ms)

The length of time the RTU waits for data link ack from the IED when requested. The ACK Frame Timeout default is 5000ms.

2.4.15 Number of Frame Retries (0 to 9)

The number of frame retries before an error is recorded. The default is 0.

2.4.16 Scanner Application Parameters

2.4.17 Number of IEDs (0 to 40)

Enter the number of Slave Devices connected to this communication channel. Default is 0.

2.4.18 Receive time-out (0-60,000ms)

Enter the receive timeout. The receive timeout is the length of time the DNPM task will wait for the entire message to be received from the IED. The default setting is 5000 (5 seconds).

Note: This value must be equal to, or greater than, the RX Timeout in Data Link Parameters.

2.4.19 Maximum com error count (0 to 100)

Enter the maximum comm error count per Slave Device before marking the points failed or setting the Comm Fail status point. The default is 3.

2.4.20 Scanner application retries (0 to 10)

Enter the number of scanner application retries. The default is 0.

2.4.21 Integrity scan interval (0 to 4320 sec)

Enter the number of seconds for the execution of an Integrity Scan. An integrity scan is a full refresh of all data from every IED on scan. The default is 15.

2.4.22 Time sync interval (0 to 3600 sec)

Enter the time for synchronizing the Slave Devices from the DNPM real-time clock. This is the time in seconds between time sync messages from the DNPM to the IEDs. The default is 15. Setting this value to zero disables the global broadcast of sending the time to the IEDs. If the IED requests the time via the protocol, the RTU will send the time.

17

2.4.23 Accumulator freeze time 1 (-1 to 3600 sec)

- 2.4.24 Accumulator freeze time 2 (-1 to 3600 sec)
- 2.4.25 Accumulator freeze time 3 (-1 to 3600 sec)
- 2.4.26 Accumulator freeze time 4 (-1 to 3600 sec)

This feature not implemented.

2.4.27 Frozen accum. Read time (1 to 60 sec)

This feature not implemented.

2.4.28 Running counters read interval (0 to 3600 sec)

The running accumulators are read according to this timer when the accumulator freeze schedule above is not populated. The default is 15.

2.4.29 Fast Scan Cycles (0 to 2048)

When an SBO command is issued to an IED, the IED is scanned immediately this amount of times for status changes. This expedites a status change to the RTU in large systems with many IEDs. The default is 15.

2.4.30 Time Between Messages (0 to 60,000 ms)

This is the minimum time between polls. The poll could take longer, depending on the number of IEDs and other factors, but the entered value sets the least time the poll will take. The default is 250 ms.

2.4.31 Time Format (Local, UTC)

Note: The coordination between UTC and local time is a feature that may be ignored. If you want your RTU to act as it always has in regards to time syncs, set Time Format to Local Time. See Time Configuration Settings in the Configuration chapter of the hardware manual for time settings under the CPU block.

If you want to send time synchronization to this device, you must know whether the device will accept Local time or UTC time, then set this radio button to match.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.5 Ethernet Comm Port Configuration

DNPM is a protocol that communicates between the RTU and an IED.

From the Configuration screen, click Ethernet Comm. You will get a screen similar to Figure 2-3. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click DNPM from the Protocol drop-down menu as shown.

Figure 2-3 DNPM Ethernet Comm Port Configuration

Commun	ication	Port Co	nfiguration

Socket Number	Name	Protocol		Configure Protocol	Point Operations	Copy to Port
Socket #1	Socket 1	None	*	Socket 1	· ·	Сору
Socket #2	Socket 2	None - RTU-IED -		Socket 2	· ·	Сору
Socket #3	Socket 3	DNPM		Socket 3	·	Сору
Socket #4	Socket 4	Modbus(M) - MTU-RTU -		Socket 4	· .	Сору
Socket #5	Socket 5	DNPR FM		Socket 5	· .	Сору
Socket #6	Socket 6	Modbus(R)		Socket 6	· ·	Сору
Socket #7	Socket 7	None	*	Socket 7	· ·	Сору
Socket #8	Socket 8	None	*	Socket 8	·	Сору
Socket #9	Socket 9	None	~	Socket 9	· ·	Сору
Socket #10	Socket 10	None	*	Socket 10	· ·	Сору
Socket #11	Socket 11	None	~	Socket 11	·	Сору
Socket #12	Socket 12	None	~	Socket 12	·	Сору
Socket #13	Socket 13	None	*	Socket 13	· ·	Сору
Socket #14	Socket 14	None	~	Socket 14	· ·	Сору
Socket #15	Socket 15	None	~	Socket 15	· ·	Сору
Socket #16	Socket 16	None	~	Socket 16	·	Сору
Communication	n Associations Config	g				Back

2.6 **Configure Protocol, Ethernet Comm**

Under the heading Configure Protocol, click Socket n to configure the DNPM port. You may accept all defaults or fill in the form according to the information following the figure below.

Figure 2-4 DNPM Ethernet Comm Channel Configuration

DNPM RTU Communication Channel Configuration

Socket # : 1

Port Name : Socket 1

Data Link Paran	neters	Scanner Application Parameters						
UDP Port	20000	Number of IEDs	0					
Broadcast Address (XXX.XXX.XXX.XXX)	240.0.0.1	Receive time-out	5000 (ms)					
UDP	○ Yes ⊙ No	Maximum com error count	3					
Enable Time Broadcast	⊙ Yes ○ No	Scanner Application Retries	0					
Rx Timeout *	5000 (ms)	Integrity scan interval	15 (sec)					
		Time sync interval	15 (sec)					
		Accumulator freeze time 1	3600 (sec)					
		Accumulator freeze time 2	-1 (sec)					
		Accumulator freeze time 3	-1 (sec)					
		Accumulator freeze time 4	-1 (sec)					
Message Se	tup	Frozen accum. read time	60 (sec)					
Master RTU Address	65519	Running counters read interval	15 (sec)					
Ack Frame Timeout	5000 (ms)	Fast Scan Cycles	15					
Number of Frame Retries	0	Time Between Messages	250 (ms)					
		Time Format	● Local ○ UTC					
		Ca	ncel Submit					

2.6.1 Data Link Parameters

2.6.2 UDP Port

This is the port number for a User Datagram Protocol (UDP) socket connection. This connection is not used for polling IED data but configurable for devices that support this type of connection for broadcast time sync messages. Because almost all IEDs get the time sync message without using broadcast time sync, this can be left at the default. The default setting is 20000. Each additional port must be uniquely numbered. For questions and recommendations about port number assignments, see www.iana.org.

2.6.3 Broadcast Address (XXX.XXX.XXX.XXX)

This is the IP for an IED when using a UDP socket connection. This connection is not used for polling IED data but configurable for devices that support this type of connection for broadcast time sync messages. Because almost all IEDs get the time sync message without using broadcast time sync, this can be left at the default. The default setting is 240.0.0.1.

2.6.4 UDP

???

2.6.5 Enable Time Broadcast

???

2.6.6 Rx Timeout (0 to 60,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. Valid entries are in the range of 0-60000. The default setting is 5000ms (5 sec).

Please note: No configuration changes take effect until the RTU is reset.

2.6.7 Message Setup

2.6.8 Master RTU Address (0 to 65534)

This address is a unique address on the assigned communications channel of the polling RTU. Address 65535 is used only to broadcast to all stations by the MTU. Default is 65519.

2.6.9 Ack Frame Timeout (0 to 60,000ms)

The length of time the RTU waits for data link ack from the IED when requested. The ACK Frame Timeout default is 5000ms.

2.6.10 Number of Frame Retries (0 to 9)

The number of frame retries before an error is recorded. The default is 0.

2.6.11 Scanner Application Parameters

2.6.12 Number of IEDs (0 to 40)

Enter the number of Slave Devices connected to this communication channel. Default is 0.

2.6.13 Receive time-out (0-60,000ms)

Enter the receive timeout. The receive timeout is the length of time the DNPM task will wait for the entire message to be received from the IED. The default setting is 5000 (5 seconds).

Note: This value must be equal to, or greater than, the RX Timeout in Data Link Parameters.

2.6.14 Maximum com error count (0 to 100)

Enter the maximum comm error count per Slave Device before marking the points failed or setting the Comm Fail status point. The default is 3.

2.6.15 Scanner application retries (0 to 10)

Enter the number of scanner application retries. The default is 0.

2.6.16 Integrity scan interval (0 to 4320 sec)

Enter the number of seconds for the execution of an Integrity Scan. An integrity scan is a full refresh of all data from every IED on scan. The default is 15.

2.6.17 Time sync interval (0 to 3600 sec)

Enter the time for synchronizing the Slave Devices from the DNPM real-time clock. This is the time in seconds between time sync messages from the DNPM to the IEDs. The default is 15. Setting this value to zero disables the global broadcast of sending the time to the IEDs. If the IED requests the time via the protocol, the RTU will send the time.

2.6.18 Accumulator freeze time 1 (-1 to 3600 sec)

2.6.19 Accumulator freeze time 2 (-1 to 3600 sec)

2.6.20 Accumulator freeze time 3 (-1 to 3600 sec)

2.6.21 Accumulator freeze time 4 (-1 to 3600 sec)

Four entries are provided as a means of scheduling accumulator reads from the slave RTUs. Each entry represents the number of seconds after the hour. The RTU compares the present time to each entry to determine when to freeze and read the accumulators. It is possible to schedule various freeze times during the hour. Times of 900, 1800, 2700 and 3600 would enable freezes every fifteen minutes during the hour. Each freeze time may be disabled with an entry of -1.

2.6.22 Frozen accum. Read time (1 to 60 sec)

Enter the number of seconds to read the accumulators after an accumulator freeze. The default is 60.

Running counter reads are not performed during this time interval between ACC freeze and the read time expiration.

2.6.23 Running counters read interval (0 to 3600 sec)

The running accumulators are read according to this timer when the accumulator freeze schedule above is not populated. The default is 15.

2.6.24 Fast Scan Cycles (0 to 2048)

When an SBO command is issued to an IED, the IED is scanned immediately this amount of times for status changes. This expedites a status change to the RTU in large systems with many IEDs. The default is 15.

2.6.25 Time Between Messages (0 to 60,000 ms)

This is the minimum time between polls. The poll could take longer, depending on the number of IEDs and other factors, but the entered value sets the least time the poll will take. The default is 250 ms.

2.6.26 Time Format (Local, UTC)

Note: The coordination between UTC and local time is a feature that may be ignored. If you want your RTU to act as it always has in regards to time syncs, set Time Format to Local Time. See Time Configuration Settings in the Configuration chapter of the hardware manual for time settings under the CPU block.

If you want to send time synchronization to this device, you must know whether the device will accept Local time or UTC time, then set this radio button to match.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.7 **Point Operations**

2.7.1 Serial Comm

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Figure 2-5	IED Configuration
------------	-------------------

	DNPM IED Configuration													
Port # 3	Port # 3 Port Name : RTU to IED													
IED #	IED Name	IED Address		Direct Operate	Direct Operate AO	32 bit AO		Slave Config	Copy to IEDn	Export Import				
1	DNPM_IED_1	1	2	Y	Y	Ν	Y	Edit	Сору	Exp Imp				
										Back				

2.7.2 IED

The logical number of the IED on this communication channel.

2.7.3 IED Name

Click on the IED Name. A pop-up window will appear. See section 2.7.13.1.

2.7.4 IED Address

Reflects the entry in the pop-up menu. See section 2.7.13.1.

2.7.5 Scan Type

Reflects the entry in the pop-up menu. See section 2.7.13.1.

2.7.6 Direct Operate Function Controls

Reflects the entry in the pop-up menu. See section 2.7.13.1.

2.7.7 Direct Operate AO

Reflects the entry in the pop-up menu. See section 2.7.13.1.

2.7.8 32 bit AO

Reflects the entry in the pop-up menu. See section 2.7.13.1.

2.7.9 On Scan

Reflects the entry in the pop-up menu. See section 2.7.13.1.

Note: DNPM may be switched On Scan to Off Scan and vice versa without the need to reboot.

2.7.10 Slave Config

Click on Edit to edit the IED points. See section "2.7.32.1 Slave Configuration Edit".

2.7.11 Copy to IEDn

This function copies everything in the IED configuration except the IED Name, the IED Address, and the Scan Type 5 Status Map. Enter the number of the target IED and click Copy.

2.7.12 Export

The Export function copies everything in the IED configuration except the IED Name, the IED Address, and the Scan Type 5 Status Map to an xml file. The Exp button exports a configuration in xml format from the IED to the RTU as a template. The templates are protocol/IED specific. This template is stored in the RTU. When you choose Up/Download tab and click on "Get" (get files from RTU), you will transfer these templates to your PC.

Choose from one of the existing file types (if present), or create a new xml file type. Click Save after your selection.

		-							
Port # 1			_					Po	ort Name : Port 1
IED #	IED Name	IED Address	Scan Type	Direct Operate	32 bit AO	On Scan	Slave Config	Copy to IEDn	Export Import
1	DNPM_IED_1	1	2	Y_	N	Y	Edit	Сору	Exp Imp
Save Template X									
				F	Replace E	Existing		*	
							(OR)		
				C	Create Ne	ew.			
								Save	

DNPM IED Configuration

2.7.13 Import

The Imp button imports a configuration in xml format as shown below. Choose from one of the existing file types (if present) shown in the pull-down menu. If a new file type has been created under Export, that file type will also show up in the pull-down menu. When you set up another RTU, choose the Up/Download tab and click "Send" (send files to RTU), the template you save in the first RTU will be downloaded to the second RTU. Click Get after your selection below.

DNPM IED Configuration											
Port # 1								P	ort Name : Port	t 1	
IED #	IED Name	IED Address	Scan Type		32 bit AO	On Scan	Slave Config	Copy to IEDn	Export Import		
1	DNPM_IED_1	1	2	Y	Ν_	Y	Edit	Сору	Exp Imp		
	Load Template X										
					L	oad Ten	nplate		*	_	
									Get		

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

2.7.13.1 IED Name & Authentication Configuration

When you click the name of the IED (in blue characters), a pop-up menu will appear, as shown in Figure 2-6. Edit this pop-up window according to the directions below. After editing, your choices are reflected as explained under Figure 2-5.

			D	NPM IED	Configura	tion				
Port # 3									Port	Name : RTU to IED
IED # IED Nam	ie	IED Address	Scan Type	Direct Operate	Direct Operate AO	32 bit AO	On Scan	Slave Config	Copy to IEDn	Export Import
1 DNPM_IED	0_1	1	2	Y	Y	N	Y	Edit	Сору	Exp Imp
	IED #1 Cor	figuratio	n				х			Back
	IED Name		DNP	M_IED_1						
	IED Addres	s	1							
	Scan Type		2	-						
	Direct Ope Function C		()	⊙Yes ◯No No Ack ◯Yes ⊙No						
	Direct Ope Function C		()	(es 🔿 No	No Ack	• Yes (⊃ No			
	On Scan *		()	∕es ⊖N	0					
	32 bit Anal	og Out	0	∕es ⊙N	o					
	Scan Type Input	5 Status	Мар	•						
	Secure Aut	h Params	Cor	nfig						
	Class 123 Limit	Event	01	′es ⊙N	o 50					
	Frozen Acc	Enabled	()	′es ⊖N	0		Set			

Figure 2-6	IED Configuration
------------	-------------------

2.7.14 IED Name

Accept the default name or type a name of your choosing.

2.7.15 IED Address

Enter the IED address. The default is 1.

2.7.16 Scan Type

Enter the scan type. See section 2.1 for an explanation of the DNP scan types. The default is 2.

2.7.17 Direct Operate Function Controls

The DNPM IED configuration allows for three types of operation for controls.

- 1. Select-Before-Operate (SBO) in which two commands (Select/Execute) are sent to the IED to perform a control operation.
- 2. Direct Operate (single command) with an acknowledgement response
- 3. Direct Operate (single command) without an acknowledgment response

The IED's DNP profile should indicate which type of control functionality is appropriate.

The default type is Direct Operate with acknowledge.

Select first "Yes" radio button to enable Direct Operate (single command) controls.

Select first "No" radio button to enable SBO type controls. Note: Selection of "No" for this option renders "**No Ack**" irrelevant.

Select the second "Yes" (after **No Ack**) to send a Direct Operate – No Acknowledge function to the IED to perform a Direct Operate control.

Select the second "No" (after **No Ack**) to send a Direct Operate function to the IED to perform a Direct Operate control. (IED will send an acknowledge message).

Refer to the DNP3 documentation for further information about these functions.

2.7.18 Direct Operate AO Function Controls ???

The DNPM IED configuration allows for three types of operation for AO Function controls.

- 1. Direct Operate (single command) with an acknowledgement response
- 2. Direct Operate (single command) without an acknowledgment response

The IED's DNP profile should indicate which type of control functionality is appropriate.

The default type is Direct Operate without acknowledge.

Select first "Yes" radio button to enable Direct Operate (single command) AO.

Select the second "Yes" (after **No Ack**) to send a Direct Operate – No Acknowledge function to the IED to perform a Direct Operate AO.

Select the second "No" (after **No Ack**) to send a Direct Operate function to the IED to perform a Direct Operate AO. (IED will send an acknowledge message).

Refer to the DNP3 documentation for further information about these functions.

2.7.19 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled.

Note: DNPM may be switched On Scan to Off Scan and vice versa without the need to reboot.

2.7.20 32 bit Analog Out

Select Yes if the IED is designed for 32 bit AOs. Select No if the IED is designed for 16 bit AOs.

2.7.21 Scan Type 5 Status Input

Scan Type 5 is a special scan type used when the RTU can't normally scan the IED on a regular schedule. However, controls will be delivered by the RTU to the IED as they are received from a protocol or an application running in the RTU. No scanning of the RTU is performed except when this mapped status point is set to 1. When an application sets the point to 1, the DNPM application detects the state change and then sends a Class 0 scan to the IED and sets the status point to 0. There is no guarantee that the IED answered the Class 0 scan request.

Map a point for use by the firmware to cause a scan of this IED to occur. The point must be one that the DNPM application can update. This is typically a RLL Binary Input type. As shown below.

```
Figure 2-7 SCAN TYPE 5 Status Point Mapping
```

	DNF	PM Status Input Point Mapp	ing			
Port # : 4 IED # : 1					Port N IED Name : D	ame : Port 4 DNPM_IED_1
Point	Device Name	Point Name	For	m 🄊	Source Points	
SCAN TYPE 5 Enable	RLL Points	RLL_STS 0	ΘA	Ов	Select Source	~
					Search	
]
					Cancel	Submit

2.7.22 Secure Auth Params

Click Config next to Secure Auth Params to change those settings The following screen will appear.

Figure 2-8 Secure Auth Configuration Screen										
Secure Authentication Configuration										
Port Name : Port 3		Port #: 3								
IED Name: DNPM_IED_1	IED	Address: 1								
DNPM IED Secure Authentication	DNPM IED Secure Authentication Parameters									
Secure Authentication Enabled	O Yes O N	No								
Aggressive Authentication Enabled	• Yes O No									
Session Key Change Type	⊙ Time ⊖	Counter								
Session Key Change Interval	15	(Min)								
Session Key Change Counter	1000									
Max Error Count	2									
Update Key	Change									
	Cancel	Submit								

Figure 2-8 Secure Auth Configuration Screen

The parameters are the same here as in DNPR with 1 exception/recommendation. The Session Key Change Interval/Counter should be half of the value which is configured in DNPR to ensure that Session Keys do not expire on the remote side, causing Secure Auth Errors and unnecessary messages being passed back and forth while a critical operation is waiting to be performed. Each device maintains its own Session Key Timer or Counter and once that timer expires on a DNPM device, a new Session Key is issued to the DNPR device. However, if the DNPR Session Key has expired but the DNPM Session Key Timer has not expired yet, a new Session Key will not be issued until the Max Error Count is exceeded.

2.7.23 Secure Authentication Enabled

By default, Secure Authentication is disabled. To enable it, click Yes next to Secure Authentication Enabled.

2.7.24 Aggressive Authentication Enabled

Aggressive Authentication is enabled by default. Aggressive authentication is less secure, but saves bandwidth.

2.7.25 Session Key Change Type

This defines whether Session Keys expire after a certain length of time or a certain number of secure authentication messages.

2.7.26 Session Key Change Interval

This number defines (in minutes) the length of time in which a new Session Key will become invalid. The default is 15 minutes.

2.7.27 Session Key Change Counter

This number defines the number of Secure Authentication messages which may be sent with new Session Key before it becomes invalid.

2.7.28 Max Error Count

This number defines the maximum number of Secure Auth messages (Obj 120 v 7) may be sent or received with the current session key before it is invalidated.

2.7.29 Update Key

When the Change button is clicked, a Warning dialogue as shown below will appear. Heed the Warning and click OK.

Message	from webpage 🛛 🔀
?	This value should only be changed if connected via crossover cable. Network security could be compromised if changed over the network.
	Cancel

This is the 128 bit Key which is used to decode/encode Session Key Change Messages in order to renegotiate Session Keys. This number should only be changed on a Secure Network or when directly connected to the RTU via a crossover cable, otherwise the security of the DNP messages would be compromised.

Figure 2-9 Secure Authentication Update Key

Secure Authentication Configuration										
Port Name : Port 3		Port #: 3								
Master Name: DNPM_IED_1	Master Name: DNPM_IED_1 Master ID: 1									
DNPR Secure Authentication Upda	ite Key									
Update Key 0x 11223344556677889900aabbccdde	eff									
	Cancel	Submit								

а

The Update Key is a 128 bit number which must be entered as 16 Bytes (32 characters). Only the numbers 0-9 and a-f are valid characters. The ASCII values entered are converted to the binary hexadecimal equivalent in the RTU.

2.7.30 Class 123 Event Limit

This information is used in any Class 1,2,3 scan request sent by the RTU to the IED.

If set to No (default), the RTU will request all events in the IED be sent to the RTU in the response (DNP 3.0 qualifier 6 for each of the 3 classes).

If set to yes, the RTU will request the entered value maximum events be sent by the IED in the response (DNP 3.0 qualifier 7 with the number of points set to the number entered from 1 to 255 (default 50) for each of the 3 classes).

2.7.31 Frozen Acc Enabled

Click Yes (default) to allow scanning of frozen accumulators and No to disallow.

2.7.32 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

2.7.32.1 Slave Configuration Edit

2.7.33 Slave Config

Click the Edit to continue. A screen similar to Figure 2-10 will appear.

DNPM IED Configuration									
Port # 2 Port Name : Port 2 IED # : 1 IED Name : DNPM_IED_1									
Туре	Number	Edit							
Analogs Inputs	32	Edit							
Binary Inputs	64	Edit							
Counters	32	Edit							
Analog Outputs	32	Edit							
Binary Outputs	32	Edit							
		Back							

Figure 2-10 IED Configuration

2.7.34 Type

The type of point.

2.7.35 Number

Enter the number of points from your IED.

2.7.36 Edit

Click the Edit button to edit points.

Navigation

Port #: n tells you which port you are on. Port Name : name tells you the name of the port. IED #: n tells you which IED you are on. IED Name : name tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

2.7.36.1 Copy to IEDn

Note: This function applies only if more than one IED is being set up.

This function copies everything in the IED configuration except the IED Name, the IED Address, and the Scan Type 5 Status Map. Enter the number of the target IED and click Copy, as shown below.

			DI	VPM IED	Configurat	tion					
Port #	Port # 3 Port Name : RTU to										
IED #	IED Name	IED Address	Scan Type		Direct Operate AO	32 bit AO		Slave Config	Copy to IEDn	Export Import	
1	DNPM_IED_1	1	2	Y	Y	N	Y	Edit	2 Copy	Exp Imp	
2	DNPM_IED_2	2	2	Y	Y	N	Y	Edit	Сору	Exp Imp	
										Back	

2.7.36.2 Export

The Export function copies everything in the IED configuration except the IED Name, the IED Address, and the Scan Type 5 Status Map to an xml file. The Exp button exports a configuration in xml format from the IED to the RTU as a template. The templates are protocol/IED specific. This template is stored in the RTU. When you choose Up/Download tab and click on "Get" (get files from RTU), you will transfer these templates to your PC.

Choose from one of the existing file types (if present), or create a new xml file type. Click Save after your selection.

DNPM IED Configuration												
Port # 3	ort # 3 Port Nam											
IED #	IED Name	IED Address	Scan Type		Direct Operate AO	32 bit AO	On Scan	Slave Config	Copy to IEDn	Export Import		
1	DNPM_IED_1	1	2	Y	Y	Ν	Y	Edit	Сору	Exp Imp		
					Save T	emplate	e		X	Back		
					Replac	e Existi	ng		*			
							(C	R)				
					Create	New						
									Save			

_ . . _ . _ . _ _ _

2.7.36.3 Import

The Imp button imports a configuration in xml format as shown below. Choose from one of the existing file types (if present) shown in the pull-down menu. If a new file type has been created under Export, that file type will also show up in the pull-down menu. When you set up another RTU, choose the Up/Download tab and click "Send" (send files to RTU), the template you save in the first RTU will be downloaded to the second RTU. Click Get after your selection below.

	DNPM IED Configuration											
Port # 3	Port # 3 Port Name : RTU to I											
IED #	IED Name	IED Address	Scan Type	Direct Operate	Direct Operate AO	32 bit AO	On Scan	Slave Config	Copy to IEDn	Export Import		
1	DNPM_IED_1	1	2	Y	Y	Ν	Y	Edit	Сору	Exp Imp		
						Load 1	ſempla	te		X Back		
						Load 1	Fempla	ate		*		
										Get		

2.7.37 Ethernet Comm

From the Ethernet Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-11 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

	DNPM IED Configuration										
Socket	ocket # 1 Port Name : Socket 1										
IED #	IED Name	IP Address : Port No.	IED Address		Direct Operate	Direct Operate AO	32 bit AO		Slave Config	Copy to IEDn	Export Import
1	DNPM_IED_1	172.18.150.171 : 20000		2	Y	Y	N	Y	Edit	Сору	Exp Imp
											Back

2.7.38 IED

The logical number of the IED on this communication channel.

2.7.39 IED Name

Click on the IED Name. A pop-up window will appear. See section 2.7.48.1.

2.7.40 IP Address : Port No.

Reflects the entry in the pop-up menu. See section 2.7.48.1.

2.7.41 IED Address

Reflects the entry in the pop-up menu. See section 2.7.48.1.

2.7.42 Scan Type

Reflects the entry in the pop-up menu. See section 2.7.48.1.

2.7.43 Direct Operate

Reflects the entry in the pop-up menu. See section 2.7.48.1.

2.7.44 Direct Operate AO

Reflects the entry in the pop-up menu. See section 2.7.48.1.

2.7.45 32 bit AO

Reflects the entry in the pop-up menu. See section 2.7.48.1.

2.7.46 On Scan

Reflects the entry in the pop-up menu. See section 2.7.48.1.

Note: DNPM may be switched On Scan to Off Scan and vice versa without the need to reboot.

2.7.47 Slave Config

Click on Edit to edit the IED points. See section 2.7.32.1 Slave Configuration Edit.

2.7.48 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

2.7.48.1 IED Name & Address Configuration

When you click the name of the IED (in blue characters), a pop-up menu will appear, as shown in Figure 2-12. Edit this pop-up window according to the directions below. After editing, your choices are reflected as explained under Figure 2-11.

Figure 2-12 IED Configuration

Note: Except for the IED Address : Port No., explained below, the DNP IED Configuration for Ethernet is exactly the same as explained for Serial Comm Setup in **Section 2.7.13.1**

2.7.49 IP Address : Port No.

Enter the IED IP Address and the IED Port Number. Each additional port must be uniquely numbered. For questions and recommendations about port number assignments, see www.iana.org.

2.7.50 IED Analog Configuration

From the DNPM IED Configuration screen, click on Edit for Analogs. A screen similar to Figure 2-13 will appear.

DNPM Analog Input Configuration							
0ort#:2 ED#:1					Port Name : Port 2 me : DNPM_IED_1		
	Page 1 of 2	GoT			Next >>		
Point Name	e C Min	C Max	EGU Min	EGU Max	1 ED Point		
0 IED_ANALOG 0	-2147483648	214748364	-5	5	U		
1 IED_ANALOG 1	-5	5		5	1		
2 IED_ANALOG 2	-5	5	Click on Head	er to	2		
3 IED_ANALOG 3	-5	5	Change All		3		
4 IED_ANALOG 4	-5	5	Change All	Х	4		
5 IED_ANALOG 5	-5	5	Value 🛛	Set	5		
6 IED_ANALOG 6	-5	5	1/ 1		6		
7 IED_ANALOG 7	-5	5	and/or change		7		
8 IED_ANALOG 8	-5	5		5	8		
9 IED_ANALOG 9	li j	5	-5	5	9		
10 IED_ANALOG 10) [-5	5	-5	5			
11 IED_ANALOG 11	5	5	-5	5	11		
12 IED_ANALOG 12	2	5	-5	5	12		
13 IED_ANALOG 13	3 -5	5	-5	5	13		
14 IED_ANALOG 14	-5	5	-5	5	14		
15 IED_ANALOG 15	5 -5	5	-5	5	15		
				Can	cel Submit		

Protocol logical point number. This number cannot be changed.

2.7.51 Name

Enter the name of the point (or accept the default name).

2.7.52 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

2.7.53 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

2.7.54 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

2.7.55 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

2.7.56 IED Point

Identifies the specific ANA point (DNP index) to be obtained from the IED for each protocol logical point number. Enter the number of the point or accept the default number.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.7.57 IED Status Configuration

From the DNPM IED Configuration screen, click on Edit for Status. A screen similar to Figure 2-14 will appear.

DNPM Status Configuration					
Port # : 1 Port Name : F IED # : 1 IED Name : DNPM_]					
Detet	Page 1 of 5 GoTo	GO Next >>			
Point	Name	IED Point			
-1		-1			
0	IED_STS 0	0			
1	IED_STS 1	1			
2	IED_STS 2	2			
З	IED_STS 3	3			
4	IED_STS 4	4			
5	IED_STS 5	5			
6	IED_STS 6	6			
7	IED_STS 7	7			
8	IED_STS 8	8			
9	IED_STS 9	9			
10	IED_STS 10	10			
11	IED_STS 11	11			
12	IED_STS 12	12			
13	IED_STS 13	13			
14	IED_STS 14	14			
	Can	cel Submit			

Figure 2-14 DNPM Status Input Configuration

2.7.58 Point

Protocol logical point number. This number cannot be changed. The COMM_STS point is automatically assigned to show whether the DNPM comm. channel is working or not. The RTU for DNPM will support up to 1024 binary input points.

2.7.59 Name

Enter the name of the point (except for COMM_STS which can not be changed) or accept the default name.

2.7.60 IED Point

Identifies the specific STS point (DNP index) to be obtained from the IED for each protocol logical point number. Enter the number of the point (except for COMM_STS which cannot be changed) or accept the default number.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.7.61 IED Counters Configuration

From the DNPM IED Configuration screen, click on Edit for Counters. A screen similar to Figure 2-15 will appear.

DNPM Counters Configuration						
Port # 2 IED # : 1		Port Name : Port 2				
IED # : J	Page 1 of 2 GoTo	GO Next >>				
Point	Name	IED Point				
0	IED_ACC_ 0	0				
1	IED_ACC_ 1	1				
2	IED_ACC_ 2	2				
З	IED_ACC_ 3	3				
4	IED_ACC_ 4	4				
5	IED_ACC_ 5	5				
6	IED_ACC_ 6	6				
7	IED_ACC_ 7	7				
8	IED_ACC_ 8	8				
9	IED_ACC_ 9	9				
10	IED_ACC_ 10	10				
11	IED_ACC_ 11	11				
12	IED_ACC_ 12	12				
13	IED_ACC_ 13	13				
14	IED_ACC_ 14	14				
15	IED_ACC_ 15	15				
	Car	icel Submit				

Figure 2-15 DNPM Counters Configuration

2.7.62 Point

Protocol logical point number. This number cannot be changed.

2.7.63 Name

Enter the name of the point or accept the default name.

2.7.64 IED Point

Identifies the specific Counter point (DNP index) to be obtained from the IED for each protocol logical point number. Enter the number of the point or accept the default number.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.7.65 IED Analog Output Configuration

From the DNPM IED Configuration screen, click on Edit for Analog Output. A screen similar to Figure 2-16 will appear.

DNPM Analog Output Configuration								
Port # : 1 Port Name : Port 1 IED # : 1 IED Name : DNPM_IED_1								
10 * .1		Page 1 of 2	GoT	- Go		Next >>		
Point	Name	C Min	C Max	EGU Min	EGU Max	IED Point		
0	IED_AO_ 0	-5	5	-5	5	0		
1	IED_AO_ 1	-5	5	L.	5	1		
2	IED_AO_ 2	-5	5 (CI	ick on Header	to	2		
3	IED_AO_ 3	-5		ange All		3		
4	IED_AO_ 4	-5	5	iange All	X	4		
5	IED_AO_ 5	-5	5 Va	ilue 🛛	Set	5		
6	IED_AO_ 6	-5	5	1/ 1		6		
7	IED_AO_ 7	-5	5 an	d/or change		7		
8	IED_AO_ 8	-5	5	15	5	8		
9	IED_AO_ 9	-5	5	-5	5	9		
10	IED_AO_ 10	-5	5	-5	5	10		
11	IED_AO_ 11	-5	5	-5	5	11		
12	IED_AO_ 12	-5	5	-5	5	12		
13	IED_AO_ 13	-5	5	-5	5	13		
14	IED_AO_ 14	-5	5	-5	5	14		
15	IED_AO_ 15	-5	5	-5	5	15		
					Can	cel Submit		

Figure 2-16 DNPM Analog Output Configuration

2.7.66 Point

Protocol logical point number. This number cannot be changed

2.7.67 Name

Enter the name of the point (or accept the default name)

2.7.68 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header

2.7.69 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header

2.7.70 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header

2.7.71 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header

2.7.72 IED Point

Identifies the specific ANA point (DNP index) to be obtained from the IED for each protocol logical point number. Enter the number of the point or accept the default number.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.7.73 IED Binary Outputs Configuration

Click on Edit for Binary Outputs. A screen similar to Figure 2-17 will appear.

IED Binary Outputs provides the correct combinations of Pulse On, Pulse Off, Latch On, Latch Off, Null, Close, and Trip for those IEDs that need this degree of control. The RTU sends the Binary Output codes to the Control Relay Output Block (Data Object 12, Variation 1), code field.

DNPM Binary Outputs Configuration							
Port # : 1 IED # : 1					т	Port Name : Port 1 ED Name : DNPM IED 1	
10 * . 1		Page 1 of 2		GoTo Go	1	Next >>	
		-		Trip		Close	
Point	Point Name	Execute Time	IED Point	Binary Output Selection	IED Point	Binary Output Selection	
0	IED_BO 0	100	0	Pulse On, Trip 👤	0	Pluse On, Close 💌	
1	IED_BO 1	500	1	Pluse On, Close 🔺 Pulse On, Trip	1	Pluse On, Close 💌	
2	IED. Click on Header t	0	2	Pulse Off, NULL Pulse Off, Close	2	Pluse On, Close 💌	
3	IED Change All		3	Pulse Off, Trip	3	Pluse On, Close 💌	
4	IED. Change All	X	4	Latch On, NULL Latch On, Close	4	Pluse On, Close 💌	
5	IED. Value	Set	5	Latch On, Trip Latch Off, NULL	5	Pluse On, Close 💌	
6	IED_ and/or change		6	Latch Off, Close 🔜	6	Pluse On, Close 💌	
7	IED_BO7	700	7	Latch Off, Trip Puise On, Trip	7	Pluse On, Close 💌	
8	IED_BO 8	5000	8	Pulse On, Trip 🔻	8	Pluse On. Close 🔻	
9	IED_BO 9	500	9	Pulse On, Trip 🖃	9	Pluse On, Close 💌	
10	IED_BO 10	500	10	Pulse On, Trip 💌	10	Pluse On, Close 💌	
11	IED_BO 11	500	11	Pulse On, Trip 💌	11	Pluse On, Close 💌	
12	IED_BO 12	500	12	Pulse On, Trip 💌	12	Pluse On, Close 💌	
13	IED_BO 13	500	13	Pulse On, Trip 💌	13	Pluse On, Close 💌	
14	IED_BO 14	500	14	Pulse On, Trip 💌	14	Pluse On, Close 💌	
15	IED_BO 15	500	15	Pulse On, Trip 💌	15	Pluse On, Close 💌	
						Cancel Submit	

Figure 2-17 DNPM Binary Outputs Configuration

2.7.74 Point

Protocol logical point number. This number cannot be changed

2.7.75 Point Name

Enter the name of the point (or accept the default name)

2.7.76 Execute Time

Enter the Execute Time (or accept the default)

2.7.77 Trip-IED Point

Enter this number from the documentation provided with the Slave.

2.7.78 Trip-Binary Output Selection

From the drop-down menu, select the appropriate function. See the vendor's documentation.

2.7.79 Close-IED Point

Enter this number from the documentation provided with the Slave.

2.7.80 Close-Binary Output Selection

From the drop-down menu, select the appropriate function. See the vendor's documentation.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

2.8 Data Display

Click the Data Display tab as shown in Figure 2-18.

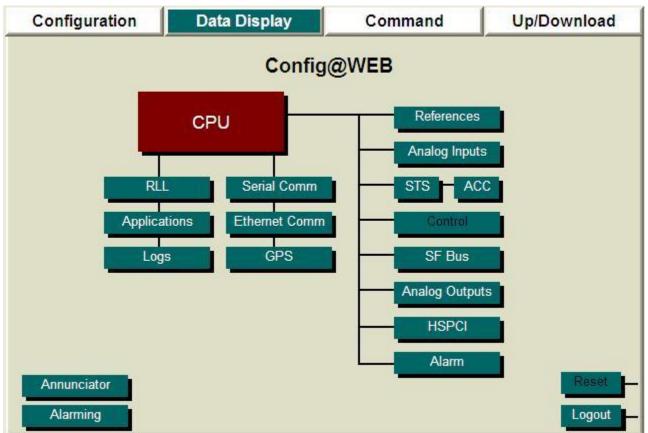


Figure 2-18 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Display Communication Port Data									
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data			
Port #1	K	K	Master to RTU	DNPR	View	Port Data			
Port #2	K	K	Backup	DNPR	View	Port Data			
Port #3	K	K	RTU to IED	DNPM	View	Port Data			
Port #4	K	K	Port 4	None	View	Port Data			
Port #5	K	K	Port 5	None	View	Port Data			
Port #6	K	K	Port 6	None	View	Port Data			
Port #7	K	K	Port 7	None	View	Port Data			
Port #8	K	K	Port 8	None	View	Port Data			
Port #9	K	K	Port 9	None	View	Port Data			
Port #10	K	К	Port 10	None	View	Port Data			
Port #11	K	К	Port 11	None	View	Port Data			
Port #12	К	К	Port 12	None	View	Port Data			
Communicat	tion Ass	ociation	s Display			Back			

2.8.1 Port Number

Physical Port number of the RTU.

2.8.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

2.8.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

2.8.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

2.8.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

2.8.3 Name

The port name given during configuration or default name accepted.

2.8.4 Protocol

The configured protocol for this port.

2.8.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

2.8.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

Navigation

Click the Back button to return to the previous screen.

2.8.6.1 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Serial Comm Counters Display 2.8.7

Under Comm Counters, click View to get the screen shown below.

Figure 2 20	DNPM Serial Communication Counters D	ionlaw
Figure 2-20	DIVE WE SETTAL COMMUNICATION COUNTERS D.	ispiay

	DNPM Communication Counters	Display
Port # : 3		Port Name : Port 3
Point	Counter Name	Counts
1	Frames Sent	137
2	Frames Received	0
3	No Replies	122
4	CRC Errors	0
5	Framing Errors	0
6	Overrun Errors	0
7	Application Confirm Timeouts	0
8	Free Frames Exhausted	0
IED Com	m Counters View m Counters View mm Counters Reset	
110301 00		Back

Point Number 2.8.8

A logical point number for reference only.

2.8.9 **Counter Name**

The following counters are monitored:

2.8.9.1 Frames Sent

This indicates the cumulative number of transmitted frames since the last reset or power-up.

2.8.9.2 **Frames Received**

This indicates the cumulative number of received frames since the last reset or power-up.

2.8.9.3 No Replies

This indicates the cumulative number of transmitted frames that did not receive a response since the last reset or power-up. This count can be affected by the Rx timeout delay.

2.8.9.4 CRC Errors

This indicates the cumulative number of received frames with CRC errors since the last reset or power-up. This can be affected by parity and MTO.

2.8.9.5 Framing Errors

This indicates the cumulative number of framing errors since the last reset or power-up. This can be affected by parity.

2.8.9.6 Overrun Errors

This indicates the cumulative number of over-run errors since the last reset or power-up.

2.8.9.7 Application Confirm Timeouts

This indicates the cumulative number of Application Confirm Timeouts since the last reset or power-up.

2.8.9.8 Free Frames Exhausted

This counter increments whenever a message is received and there are no more free frames in memory to store the incoming message. If the counter is incrementing, it indicates a critical memory shortage problem with the DNP Data Link task, and Telvent tech support should be called.

2.8.10 Counts

The counts for each type of Counter.

2.8.10.1 Data Trap

Please see the Config@WEB Secure Software Users Guide.

2.8.10.2 Secure Auth Counters

A Secure Authentication Counter is ??? Click this button to see the following breakout.

	DNPM Secure Authentication Counters										
Port # : 3 Port Name : RTU to IED											
IED Addr	IED Name	Key Chgs	Failed Key Chgs	Msg Auths	Failed Auths	Aggressive Auths	Failed Agg Auths	Prev Error Code	Prev Error Time		
1	DNPM_IED_1	0	0	0	0	0	0	-	1970/01/01 00:00:00.000		
									Done		

2.8.11 IED Addr

The address of the IED

2.8.12 IED Name

The name of the IED.

2.8.13 Key Chgs

The number of times the Session Key has changed since the last reboot.

2.8.14 Failed Key Chgs

The number of failed Session Key changes since the last reboot.

2.8.15 Msg Auths

The number of critical messages which have been successfully authenticated.

2.8.16 Failed Auths

The number of critical messages in which authentication has failed.

2.8.17 Aggressive Auths

The number of critical messages which have been successfully been authenticated using the Aggressive Authentication method.

2.8.18 Failed Agg Auths

The number of critical message which have failed to be authenticated using the Aggressive Authentication method.

2.8.19 Prev Error Code

The error code associated with the last Authentication failure.

2.8.20 Prev Error Time

The time of the last Authentication failure.

2.8.20.1 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

	DNPM IED Comm Counters Display									
Port # : 4	Port # : 4 Port Name : Port 4									
IED #	IED Name	Messages Sent	Messages Received	No Replys	Format Errors	Object Errors	Internal Indications			
1	DNPM_IED_1	24	8	16	0	0	0300			
2	DNPM_IED_2	22	0	21	0	0	0000			
							Done			

2.8.21 IED

The number of the IED

2.8.22 IED Name

The name of the IED

2.8.23 Messages Sent

Messages sent to this IED since the last reset or since the last time the counters were cleared.

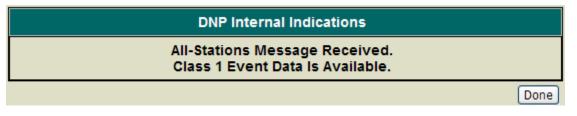
2.8.24 Messages Received

Messages received from this IED since the last reset or since the last time the counters were cleared.

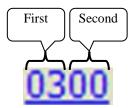
2.8.25 No Replies

The number of no replies from this IED since the last reset or since the last time the counters were cleared.

2.8.26 Format Errors


The number of format errors from this IED since the last reset or since the last time the counters were cleared.

2.8.27 Object Errors


The number of object errors from this IED since the last reset or since the last time the counters were cleared.

2.8.28 Internal Indications

The Internal Indications field show the particular message when you click on it. For instance, in the example above, IED 1 has an internal indication of 0300. When this number is clicked, the message appears as follows.

The code shown in the example above is in hex. Sometimes the message comes and goes too quickly to be clicked on. In that case, it's useful to understand what the code means. Below the following figure is an interpretation of the hex code.

You must translate from hex to binary to interpret this code. For instance, let's examine the above code reading of 0300. The first octet is 03. The second octet is 00. Converting 03 from hex to binary yields 00000011. Now let's examine the meaning of this number from the listing below:

From below, 00000011 yields bit position 1 and bit position 0.

Bit Position 0 means All stations message received.

Bit Position 1 means Class 1 data available.

These two messages are displayed in plain English in the example above.

The second octet is all zeros (0), so there is no meaningful state.

The following listing is a direct quote from DNP Basic 4 Document:

The Internal Indications (IIN) field is a two-octet field that follows the function code in all responses. When a request cannot be processed due to formatting errors or the requested data is not available, the IIN is always returned with the appropriate bits set.

|--|

First Octet

7	6	5	4	3	2	1	0
---	---	---	---	---	---	---	---

A one (1) in the bit position indicates the described state.

Bit 0 All stations message received Set when a request is received with the destination address of the all stations address (ffff hexadecimal). Cleared after next response (even if response to global request is required) Used to let the master station know that a Broadcasted message was received by this station. Bit 1 Class 1 data available Set when data that has been configured as Class 1 data is ready to be sent to the master Master station should request this class data from the Outstation when this bit is set in a response Bit 2 Class 2 data available Set when data that has been configured as Class 2 data is ready to be sent to the master Master station should request this class data from the Outstation when this bit is set in a response Bit 3 Class 3 data available Set when data that has been configured as Class 3 data is ready to be sent to the master Master station should request this class data from the Outstation when this bit is set in a response Time- synchronization required from the master. The master synchronizes the time Bit 4 by writing the Time and Date object to the Outstation. Cleared when the time is set by the master. This bit is also cleared when the master explicitly writes a 0 into this bit of the Internal Indication object of the Outstation. Bit 5 Set when some or all of the Outstation's digital output points are in the Local state. That is, the Outstation's control outputs are NOT accessible through the DNP protocol. Clear when the Outstation is in the Remote state. That is, the Outstation's control outputs are accessible through the DNP protocol. Bit 6 Device trouble - Set when an abnormal condition exists at the Outstation. The device profile for a given device states the conditions that effect this bit. This should only be used when the state can not be described by a combination of one or more of the other IIN bits.

Bit 7: Device restart _

Set when the user application at the Outstation restarts.

 Cleared when the master explicitly Writes a 0 into this bit of the Internal Indications object in the Outstation.

Second Octet

7		6	5	4	3	2	1	0
/		0	5	-	5	2	1	0
Bit 0	_	Function c	ode not impl	emented				
Bit 1	_	there are no This indica	o objects ass ation should	igned to the	requested cla ebugging pu	rposes and us	-	-
Bit 2	_	Parameters catch- all f This indica	s in the qualitor or application	fier, range or n request for be used for d	data fields a matting erro	are not valid o		
Bit 3	_	SOE buffe The master	rs have over should atten eir may be l	flowed. mpt to recove	er as much d	ve overflowed ata as possible error recover	e and indicat	te to the
Bit 4	_	Request ur	derstood bu	t requested o	peration is al	lready executi	ing.	
Bit 5	_	master app download configurati	lication laye another conf	r should info iguration to t ole an Outsta	rm the user of he Outstation	he Outstation of this excepti n. Note that s g it impossible	ion. The mas ometimes a o	ster may corrupt
Bit 6	_	Reserved f	or use by ag	reement, curi	ently always	s returned as z	zero (0).	
Bit 7	_	Reserved f	or use by ag	reement, curi	ently always	s returned as z	zero (0).	

Click Done to return to the overall comm. counters screen.

2.8.28.1 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

2.8.29 Ethernet Comm Counters Display

Under Comm Counters, click View to get the screen shown below.

Figure 2-21 DNPM Ethernet Communication Counters Display

DNPM Communication Counters Display									
Socket # :	: 1	Port Name : Socket 1							
Point	Counter Name	Counts							
1	Frames Sent	98569							
2	Frames Received	0							
3	No replies	93566							
4	CRC Errors	0							
5	Validate param Err	0							
6	Partial DNP msg detected	0							
7	DNP not in TCP payload	0							
8	Free Frames Exhausted	0							
9	Available Frames	499							
Dete Tree	Data Trap Configure								
IED Comr	n Counters View mm Counters Reset	Back							

DNPM Communication Counters Display

2.8.30 Point Number

A logical point number for reference only.

2.8.31 Counter Name

The following counters are monitored:

2.8.31.1 Frames Sent

This indicates the cumulative number of transmitted frames since the last reset or power-up.

2.8.31.2 Frames Received

This indicates the cumulative number of received frames since the last reset or power-up.

2.8.31.3 No Replies

This indicates the cumulative number of transmitted frames that did not receive a response since the last reset or power-up. This count can be affected by the Rx timeout delay.

2.8.31.4 CRC Errors

This indicates the cumulative number of received frames with CRC errors since the last reset or power-up. This can be affected by parity and MTO.

2.8.31.5 Validate param Err

This counter indicates that a key parameter needed by the "Validation" parser was out of specification, and prevented the parser from examining the message buffer. This is a rare occurrence, but may provide useful troubleshooting information if it is happening.

2.8.31.6 Partial DNP msg detected

This counter indicates that it took more than one read of the TCP/IP message buffer to obtain a complete DNP request message. A DNP request message is usually relatively small ($\sim 15 - 30$ bytes), so it should be unusual for the request to be broken out over multiple TCP/IP buffers. This may provide useful troubleshooting information.

2.8.31.7 DNP not in TCP payload

This counter indicates that when the TCP/IP buffer was read and examined, no valid DNP message was found in the buffer. This may provide useful troubleshooting information.

2.8.31.8 Free Frames Exhausted

This counter increments whenever a message is received and there are no more free frames in memory to store the incoming message. If the counter is incrementing, it indicates a critical memory shortage problem with the DNP Data Link task, and Telvent tech support should be called.

2.8.31.9 Available Frames

This counter keeps track of how many frames out of the original 500 are left for messages. Normally, the number will be 499, because after a frame gets used, it is returned to the Available Frames pool.

2.8.32 Counts

The counts for each type of Counter.

2.8.33 Data Trap

Please see the Config@WEB Secure Software Users Guide.

2.8.34 Secure Auth Counters

Please see Secure Auth Counters under Serial Comm Counters Display.

2.8.35 IED Comm Counters

Please see IED Comm Counters under Serial Comm Counters Display.

2.8.36 Reset Comm Counters

Click this button to reset all comm. counters.

2.8.37 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Figure 2-22 DNPM IED Display

	DNPM IED Display									
Socket #	Socket # : 1 Port Name : Socket 1									
IED #	IED Name	IED Address	Scan Type	Direct Operate Function Controls	Direct Operate AO Function Controls	On Scan	Slave Data			
1	DNPM_IED_1	1	2	Y	Y	Y	View			
							Back			

2.8.38 IED

The logical number of the IED on this communication channel.

2.8.39 IED Name

The name that was chosen, or accepted as default, during configuration.

2.8.40 IED Address

The IED Address chosen during configuration.

2.8.41 Scan Type

The scan type that was chosen during configuration. See section 2.1 for an explanation of the DNP scan types.

2.8.42 Direct Operate Function Controls

Reflects the choice made during configuration.

2.8.43 Direct Operate AO Function Controls

Reflects the choice made during configuration.

2.8.44 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

2.8.45 Slave Data

Click View to examine the data being returned from this device. A screen similar to the one below will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the DNP IED Display screen, click View under Slave Data to get the screen shown below.

DNPM IED Display								
Port # : 4 Port Name : Port 4 IED # : 1 IED Name : DNPM_IED_1								
Туре	Type Number View							
Analog Inputs	32	View						
Binary Inputs	32	View						
Counters	32	View						
Analog Outputs	32	View						
Binary Outputs	16	View						
		Back						

Figure 2-23 DNPM IED Display

2.8.46 Type

The type of point.

2.8.47 Number

The number of points from your IED.

2.8.48 View

Click the View button to view points.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the previous screen.

2.8.48.1 Analog Inputs

From the DNPM IED Display screen, click View for Analog Inputs to get the screen shown in Figure 2-24.

Figure 2-24	DNPM	Analog	Innute	Display
1 iguit 2-24		Analog	mputs	Display

DNPM Analog Inputs Display					
Port # : 1	L			ort Name : Port 1	
IED #:1			IED Nan	ne : DNPM_IED_1	
	Page1 of 2	Go To	GO	Next>>	
Point	Point Name	Point Status	Point Value	Point Counts	
0	IED_ANALOG 0	F	-5.000	0	
1	IED_ANALOG 1	F	-5.000	0	
2	IED_ANALOG 2	F	-5.000	0	
3	IED_ANALOG 3	F	-5.000	0	
4	IED_ANALOG 4	F	-5.000	0	
5	IED_ANALOG 5	F	-5.000	0	
6	IED_ANALOG 6	F	-5.000	0	
7	IED_ANALOG 7	F	-5.000	0	
8	IED_ANALOG 8	F	-5.000	0	
9	IED_ANALOG 9	F	-5.000	0	
10	IED_ANALOG 10	F	-5.000	0	
11	IED_ANALOG 11	F	-5.000	0	
12	IED_ANALOG 12	F	-5.000	0	
13	IED_ANALOG 13	F	-5.000	0	
14	IED_ANALOG 14	F	-5.000	0	
15	IED_ANALOG 15	F	-5.000	0	
				Back	

2.8.49 Point

Protocol logical point number.

2.8.50 Point Name

The name of the point assigned during configuration.

2.8.51 Point Status

Please see the Point Status Codes section of the Config@WEB Secure Software Users Guide.

2.8.52 Point Value

The engineering unit (EGU) value.

2.8.53 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

2.8.53.1 Status Inputs

From the DNPM IED Display screen, click View for Status Inputs to get the screen shown in Figure 2-25.

Figure 2-25 DNPM Status Inputs Display

DNPM Status Inputs Display						
Port # : 1 IED # : 1		IED	Port Name : Port 1 Name : DNPM_IED_1			
	Page1 of 5 Go	то <u>Go</u>	Next>>			
Point	Point Name	Point Status	Point State •			
-1	COMM_STS		CLOSED •			
0	IED_STS 0	F	OPEN •			
1	IED_STS 1	F	OPEN •			
2	IED_STS 2	F	OPEN •			
3	IED_STS 3	F	OPEN •			
4	IED_STS 4	F	OPEN •			
5	IED_STS 5	F	OPEN •			
6	IED_STS 6	F	OPEN •			
7	IED_STS 7	F	OPEN •			
8	IED_STS 8	F	OPEN •			
9	IED_STS 9	F	OPEN •			
10	IED_STS 10	F	OPEN •			
11	IED_STS 11	F	OPEN •			
12	IED_STS 12	F	OPEN •			
13	IED_STS 13	F	OPEN •			
14	IED_STS 14	F	OPEN •			
			Back			

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not the comm. channel is operational. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

2.8.54 Point

Protocol logical point number.

2.8.55 Point Name

The name of the point assigned during configuration.

2.8.56 Point Status

Please see the Point Status Codes section of the Config@WEB Secure Software Users Guide.

2.8.57 Point State

Indicates that point is either OPEN or CLOSED.

2.8.58 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

2.8.58.1 Counter Inputs

From the DNPM IED Display screen, click View for Counters to get the screen shown in Figure 2-26.

	DNPM Accumulator Inputs Display							
Port # : IED # : 1			ort Name : Port 2 ne : DNPM_IED_1					
	Page1 of 3 Go To	GO	Next>>					
Point	Point Name	Point Status	Count					
1	IED_ACC_ 0	F	0					
2	IED_ACC_ 1	F	0					
3	IED_ACC_ 2	F	0					
4	IED_ACC_ 3	F						
5	IED_ACC_ 4	F	0 0 0					
6	IED_ACC_ 5	F	0					
7	IED_ACC_ 6	F	0					
8	IED_ACC_ 7	F	0					
9	IED_ACC_ 8	F	0 0 0					
10	IED_ACC_ 9	F	0					
11	IED_ACC_ 10	F	0					
12	IED_ACC_ 11	F	0					
13	IED_ACC_ 12	F	0					
14	IED_ACC_ 13	F	0					
15	IED_ACC_ 14	F	0					
16	IED_ACC_ 15	F	0					
			Back					

Figure 2-26	DNPM	Counter	Innuts	Display
Figure 2-20	DIVENT	Counter	mputs	Display

2.8.59 Point

Protocol logical point number.

2.8.60 Point Name

The name of the point assigned during configuration.

2.8.61 Point Status

Please see the Point Status Codes section of the Config@WEB Secure Software Users Guide.

2.8.62 Count

The accumulated count.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are

on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

2.8.62.1 Analog Outputs

From the DNPM IED Display screen, click View for Analog Outputs to get the screen shown in Figure 2-27.

	DNPM Analog Outputs Display					
Port # : 1 IED # : 1			t Name : Port 1 e : DNPM_IED_1			
	Page1 of 1 Go	To <u>Go</u>				
Point	Point Name	Point Status	Point Value			
0	IED_AO_ 0	F	-5.000			
1	IED_AO_ 1	F	-5.000			
2	IED_AO_ 2	F	-5.000			
3	IED_AO_ 3	F	-5.000			
4	IED_AO_ 4	F	-5.000			
5	IED_AO_ 5	F	-5.000			
6	IED_AO_ 6	F	-5.000			
7	IED_AO_ 7	F	-5.000			
-	-	-	-			
-	-	-	-			
-	-	-	-			
-	-	-	-			
-	-	-	-			
-	-	-	-			
-	-	-	-			
-	-	-	-			
			Back			

Figure 2-27	DNPM	Analog	Outputs	Display
-------------	------	--------	---------	---------

2.8.63 Point

Protocol logical point number.

2.8.64 Point Name

The name of the point assigned during configuration.

2.8.65 Point Status

Please see the Point Status Codes section of the Config@WEB Secure Software Users Guide.

2.8.66 Point Value

The engineering unit (EGU) value.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

2.8.66.1 Binary Outputs

From the DNPM IED Display screen, click View for Binary Outputs to get the screen shown in below.

Figure 2-28 DNPM Binary Outputs Display

	DNPM Outputs Display			
Port # : 4			Port Name : I	
IED # : 1	Page1 of 1 Go To	Go	Name : DNPM_	IED_I
Point	Point Name	Point Status	Point State	•
0	IED_BO 0	F	OPEN	•
1	IED_BO 1	F	OPEN	•
2	IED_BO 2	F	OPEN	•
3	IED_BO 3	F	OPEN	•
4	IED_BO 4	F	OPEN	•
5	IED_BO 5	F	OPEN	•
6	IED_BO 6	F	OPEN	•
7	IED_BO 7	F	OPEN	•
8	IED_BO 8	F	OPEN	•
9	IED_BO 9	F	OPEN	•
10	IED_BO 10	F	OPEN	•
11	IED_BO 11	F	OPEN	•
12	IED_BO 12	F	OPEN	•
13	IED_BO 13	F	OPEN	•
14	IED_BO 14	F	OPEN	•
15	IED_BO 15	F	OPEN	•
			E	lack

2.8.67 Point

Protocol logical point number.

2.8.68 Point Name

The name of the point assigned during configuration.

2.8.69 Point Status

Please see the Point Status Codes section of the Config@WEB Secure Software Users Guide.

2.8.70 Point State

Indicates that point is either OPEN or CLOSED.

2.8.71 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

2.9 **Command Serial Comm**

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

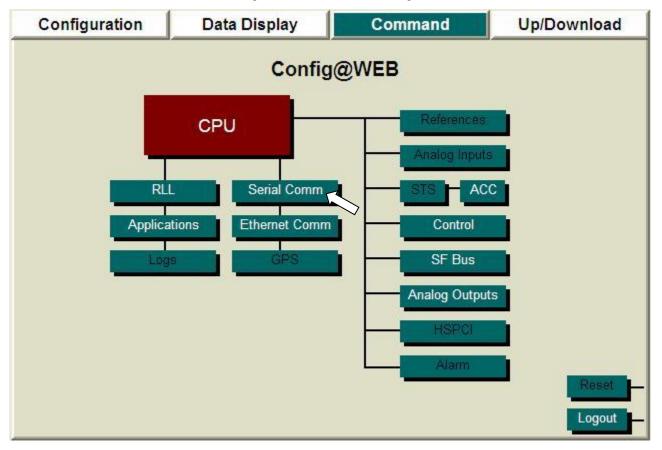


Figure 2-29 Command Tab Page

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2200 manual. Under Command Port Data, click Port Data.

Figure 2-30	Serial Comm	Command	Communications	s Port Data
-------------	-------------	---------	----------------	-------------

Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode
Port #1	К	К	Port 1	DNPM	Port Data	Normal 💌
Port#2	К	К	Port 2	None	Port Data	Normal 💌
Port#3	К	К	Port 3	None	Port Data	Normal 💌
Port#4	К	К	Port 4	None	Port Data	Normal 💌
Port#5	К	К	Port 5	None	Port Data	Normal 💌
Port#6	К	К	Port 6	None	Port Data	Normal 💌
Port#7	К	К	Port 7	None	Port Data	Normal 💌
Port#8	К	К	Port 8	None	Port Data	Normal 💌
Port#9	К	К	Port 9	None	Port Data	Normal 💌
Port#10	К	К	Port 10	None	Port Data	Normal 💌
Port#11	К	К	Port 11	None	Port Data	Normal 💌
Port#12	К	К	Port 12	None	Port Data	Normal 💌

Command Communication Port Data

The resultant screen will be similar to Figure 2-31. Click on the Command button as shown.

Figure 2-31 DNPM IED Command

DNPM IED Command							
Port # : 1 Port 1							
IED #	IED Name	IED Address	Scan Type	Direct Operate Function Controls	On Scan	Slave Data	
1	DNPM_IED_1	1	1	Y	Y	Command	
						Back	

S2200-AAA-00004

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command Analog Outputs and Binary Outputs.

DNPM IED Command.					
Port # : 3 Port Name : RTU to IED IED # : 1 IED Name : DNPM_IED_1					
Туре	Number	Command			
Analog Inputs	32				
Binary Inputs	117				
Counters	40				
Analog Outputs	12	Command			
Binary Outputs	56	Command			
		Back			

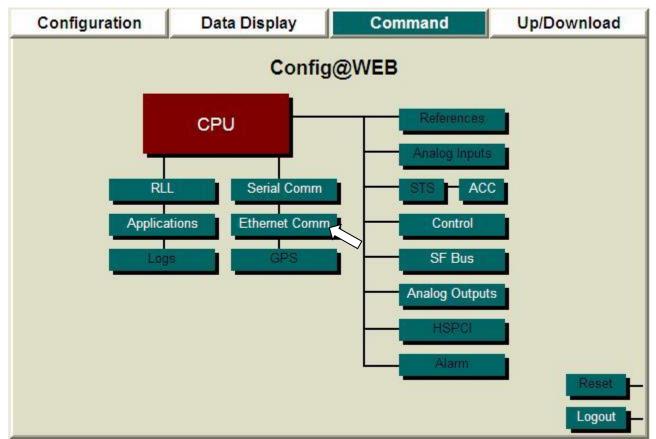
Figure 2-32 DNPM IED Command

The Analog Outputs Command will give you a screen similar to Figure 2-33. You may enter a value between 0 and 1 to drive the AO, then click the Execute button for a result similar to Point 1 of Figure 2-33.

Figure 2-33	DNPM	Analog	Outputs	Command
-------------	------	--------	---------	---------

nt # : 3 D # : 1				Name : RTU to : ame : DNPM_IED
	Page 1 of 1	Go To GO		
Point	Name	Range	Value	Operation
0	IED_AO_ 0	-100.000 to 100.000	-100.00	0 Execute
1	IED_AO_ 1	-100.000 to 100.000	-100.00	0 Execute
2	IED_AO_ 2	-100.000 to 100.000	-100.00	0 Execute
3	IED_AO_ 3	-100.000 to 100.000	-100.00	0 Execute
4	IED_AO_ 4	-100.000 to 100.000	-100.00	0 Execute
5	IED_AO_ 5	-100.000 to 100.000	-100.00	0 Execute
6	IED_AO_ 6	-100.000 to 100.000	-100.00	0 Execute
7	IED_AO_ 7	-100.000 to 100.000	-100.00	0 Execute
8	IED_AO_ 8	-100.000 to 100.000	-100.00	0 Execute
9	IED_AO_ 9	-100.000 to 100.000	-100.00	0 Execute
10	IED_AO_ 10	-100.000 to 100.000	-100.00	0 Execute
11	IED_A0_ 11	-100.000 to 100.000	-100.00	0 Execute

The Binary Outputs Command will give you a screen similar to Figure 2-34. You may Trip or Close, then click the Execute button for a result similar to Point 0 of Figure 2-34.


Figure 2-34 DNPM Binary Outputs Command

DNPM Binary Outputs Command						
Port # : 1 IED # :	L			Port N	ame : Port 1 IED Name :	
	Page	1 of 1 GoTo	Go			
Point	Name	Execute Time (ms)	Po	int Operati	ons	
0	IED_BO 0	500	 Trip 	O Close	Execute	
1	IED_BO 1	500	O Trip	O Close	Execute	
2	IED_BO 2	500	O Trip	O Close	Execute	
3	IED_BO 3	500	O Trip	O Close	Execute	
4	IED_BO 4	500	O Trip	O Close	Execute	
5	IED_BO 5	500	O Trip	O Close	Execute	
Trip on	Trip on IED_BO 0 : Successful Back					

2.10 Command Ethernet Comm

Devices on the DNPM Ethernet Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Ethernet Comm button as shown in Figure 2-35.

Figure 2-35	Command Tab Page
-------------	------------------

The resultant screen will be similar to Figure 2-36. Under Command Port Data, click Port Data for DNPM.

Command Communication Port Data					
Socket Number	Name	Protocol	Command Port Data		
Socket # 1	Socket 1	DNPM	Port Data		
Socket # 2	Socket 2	None	Port Data		
Socket#3	Socket 3	None	Port Data		
Socket#4	Socket 4	None	Port Data		
Socket # 5	Socket 5	None	Port Data		
Socket#6	Socket 6	None	Port Data		
Socket # 7	Socket 7	None	Port Data		
Socket#8	Socket 8	None	Port Data		
Socket # 9	Socket 9	None	Port Data		
Socket # 10	Socket 10	None	Port Data		
Socket # 11	Socket 11	None	Port Data		
Socket # 12	Socket 12	None	Port Data		
Socket # 13	Socket 13	None	Port Data		
Socket # 14	Socket 14	None	Port Data		
Socket # 15	Socket 15	None	Port Data		
Socket # 16	Socket 16	None	Port Data		

Figure 2-36 Ethernet Comm Command Communications Port Data

The resultant screen will be similar to the one below. Click on the Command button as shown.

Figure 2-37	DNPM IED Command
-------------	------------------

DNPM IED Command						
Socket #: 3 Port Name : Socket 3						ort Name : Socket 3
IED #	IED Name	IED Address	Scan Type	Direct Operate Function Controls	On Scan	Slave Data
1	DNPM_IED_1	1	2	Y	Y	Command L
						Back

The resultant screen will be similar to the one below. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command Analog Outputs and Binary Outputs.

DNPM IED Command. Socket # : 3 Port Name : Socket IED # : 1 IED Name : DNPM_IED_				
Type Number Command				
Analog Inputs	24			
Binary Inputs	25			
Counters	24			
Analog Outputs	24	Command		
Binary Outputs	24	Command		
		Back		

Figure 2-38	DNPM IED	Command
-------------	----------	---------

The Analog Outputs Command will give you a screen similar to Figure 2-39. You may enter a value between -100 and 100 to drive the AO, then click the Execute button for a result similar to Point 1 of the figure below.

DNPM Analog Outputs Command					
Socket # : 3 Port Name : Socket 3 IED #: 1 IED Name : DNPM_IED_1					
10.0	Page 1 of 2	Go To Go	_	Next >>	
Point	Name	Range	Value	Operation	
0	IED_AO_ 0	-100.000 to 100.000	100	Execute	
1	IED_AO_ 1	-100.000 to 100.000	-100.000	Execute	
2	IED_AO_2	-100.000 to 100.000	-100.000	Execute	
3	IED_AO_3	-100.000 to 100.000	-100.000	Execute	
4	IED_AO_4	-100.000 to 100.000	-100.000	Execute	
5	IED_AO_5	-100.000 to 100.000	-100.000	Execute	
6	IED_AO_6	-100.000 to 100.000	-100.000	Execute	
7	IED_AO_7	-100.000 to 100.000	-100.000	Execute	
8	IED_AO_ 8	-100.000 to 100.000	-100.000	Execute	
9	IED_AO_ 9	-100.000 to 100.000	-100.000	Execute	
10	IED_A0_ 10	-100.000 to 100.000	-100.000	Execute	
11	IED_A0_ 11	-100.000 to 100.000	-100.000	Execute	
12	IED_A0_ 12	-100.000 to 100.000	-100.000	Execute	
13	IED_A0_ 13	-100.000 to 100.000	-100.000	Execute	
14	IED_A0_ 14	-100.000 to 100.000	-100.000	Execute	
15	IED_A0_ 15	-100.000 to 100.000	-100.000	Execute	
IED_AO_	0 : Success			Back	

The Binary Outputs Command will give you a screen similar to the one below. You may Trip or Close, then click the Execute button for a result similar to Point 0 below.

Figure 2-40	DNPM Binary	Outputs	Command
-------------	--------------------	---------	---------

DNPM Binary Outputs Command Socket # : 3 Port Name : Socket 3						
IED # : 1	Page	1 of 2	GoTo	Go	IED Name : [DNPM_IED_1 Next >>
Point	Name	Execute	Time (ms)	P	oint Operation	ons
0	IED_BO 0	500		 Trip 	O Close	Execute
1	IED_B0 1	500		🔿 Trip	O Close	Execute
2	IED_BO 2	500		🔿 Trip	O Close	Execute
3	IED_BO 3	500		🔿 Trip	O Close	Execute
4	IED_BO 4	500		🔿 Trip	O Close	Execute
5	IED_BO 5	500		🔿 Trip	O Close	Execute
6	IED_BO 6	500		🔿 Trip	O Close	Execute
7	IED_B0 7	500		🔿 Trip	O Close	Execute
8	IED_BO 8	500		🔿 Trip	O Close	Execute
9	IED_BO 9	500		🔿 Trip	O Close	Execute
10	IED_BO 10	500		🔿 Trip	O Close	Execute
11	IED_B0 11	500		🔿 Trip	O Close	Execute
12	IED_B0 12	500		🔿 Trip	O Close	Execute
13	IED_B0 13	500		🔿 Trip	O Close	Execute
14	IED_B0 14	500		🔿 Trip	O Close	Execute
15	IED_B0 15	500		🔿 Trip	O Close	Execute
Trip on I	IED_BO 0 : Successful					Back

2.11 **DNP Device Profile Document**

Please see the manual, Config@WEB DNP Device Profile, number C3413-AAA-DNP01.

3 Modbus Master

Serial Comm Port Configuration 3.1

Modbus Master is a highly configurable protocol implementation designed to provide communication between the RTU and 1 or more Modbus IED. This implementation supports 2048 maximum configurable points for all types.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. From this screen, click Modbus(M) from the Protocol drop-down menu as shown.

				Communication	Port Configu	rati			
Port Number	RTS	DTR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations	Copy to Port
Port #1	К 🛩	К 🛩		Master to RTU	None	~	Port 01	· .	Сору
Port #2	К 🛩	К 🛩	IDOG	Backup	None	~	Port 02	· .	Сору
Port #3	К 🛩	К 🛩	IRQ6	RTU to IED	Modbus(M)	*	Port 03	Configure	Сору
Port #4	К 🛩	К 🛩		Port 4	None 	^	Port 04	Configure	Сору
Port #5	К 🛩	К 🛩		Port 5	2179 Arbiter		Port 05	•	Сору
Port #6	К 🛩	К 🛩	ID OC	Port 6	C2020(M)		Port 06	· ·	Сору
Port #7	К 🛩	К 🛩	IRQ6 💌	Port 7	C2100H(M) DNPM		Port 07	· ·	Сору
Port #8	К 🛩	К 🛩		Port 8	Electran ETI		Port 08	-	Сору
Port #9	К 🛩	К 🛩		Port 9	Harris (M)		Port 09	-	Сору
Port #10	К 🛩	К 🛩	IRQ6 💌	<u>Port 10</u>	Incom JEM2 ASCII	=	Port 10	- ·	Сору
Port #11	К 🛩	К 🛩		Port 11	Modbus(M) Quantum		Port 11		Сору
Port #12	К 🛩	К 🛩					Port 12		Сору
Communio	cation .	Associ	ations Con	fig	Symax Tickle Transdata Tunnel – MTU-RTU – 8979 C2100H CDC I CDC I CDC II DNPR FM Harris (R) IDLC L&N				Back
3	8.1.1	-	Port Nu	umber	Lan				

Figure 3-1	Modbus Master Communication Port Configuration
0	Communication Port Configuration

Physical Port number of the RTU.

3.1.2 **RTS and DTR**

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

3.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

3.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

3.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

3.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name								
Name	Name Port 1							
		Cancel	Submit					

3.1.4 Protocol

From the drop-down list, select the protocol for this port.

3.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

3.1.6 Point Operations

Click this button to assign points.

3.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

Navigation

Click the Back button to return to the previous screen.

3.2 Configure Protocol, Serial Comm

Under the heading Configure Protocol, click Port *n* to configure the Modbus Master port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Figure 3-2 Modbus Master Communication Channel Configuration
Modbus(M) Communication Channel Setun

	IVIO	Modbus(M) Communication Channel Setu					
	Po	rt # : 1	Po	ort Name : Port 1			
		Number of IEDs	0				
		Baud Rate *	9600	×			
		Parity *	None	~			
		Data Bits *	8 🛩				
		Stop Bits *	1 🛩				
		CTS Delay *	20	(ms)			
		Rx Timeout *	5000	(ms)			
		Delay for first byte *	2000	(ms)			
		Interbyte Time *	55	(ms)			
		Modem Turn Off Time *	2	(ms)			
		Hardware CTS	⊙ No	Yes			
		Hardware DCD	⊙ No	O Yes			
		Retries Before Failing Points	3	(times)			
		Read Cycle Time	250	(ms)			
Default: 0.		Write Cycle Time	1000	(ms)			
Range: 0 to 32.		Time Format	⊙ Loo	al O UTC			
			Cancel	Submit			

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

3.2.1 Number of IEDs (0 – 32)

Enter the number of IEDs connected to this port. The default setting is 0.

3.2.2 Baud Rate (300 – 38400)

From the drop-down menu, select the baud rate. The default setting is 9600.

3.2.3 Parity (None, Odd, Even)

From the drop-down menu, select the parity for the associated channel. The default setting is None.

3.2.4 Data Bits (5,6,7,8)

From the drop-down menu, select the data bits for the associated channel. The default setting is 8.

3.2.5 Stop Bits (0,1,2)

From the drop-down menu, select the stop bits for the associated channel. The default setting is 1.

3.2.6 CTS Delay (0 – 1000ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 20.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

3.2.7 Rx Timeout (0 – 60,000 msec)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 5000 msec.

Note: This timer must be greater than Delay for First Byte timer (below).

3.2.8 Delay for First Byte (0 to 60,000)

Enter the delay time for the associated channel. This is the time allowed for a Slave Device to begin its response before the MTU assumes it is not going to reply and moves on to the next device. This parameter is typically set long because of delays in IED response. Valid entries are in the range of 0-60,000 msec. The default setting is 2000 (2 sec).

Note: This timer must be <u>less</u> than Rx Timeout (above).

3.2.9 Interbyte Time (0 – 250ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 55 msec.

3.2.10 Modem Turn Off Time (0 – 250ms)

Enter the delay time that the modem will maintain the carrier after the last data byte has been transmitted. Default setting is 2.

3.2.11 Hardware CTS (No, Yes)

If the hardware Clear-To-Send option is selected for a channel, then reply data bytes will not be transmitted unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. Default setting is No.

3.2.12 Hardware DCD (No, Yes)

If the hardware data carrier detect option is selected for a channel, then the channel communications driver will accept requested message data bytes only if carrier is detected. If carrier is not detected, the data bytes are discarded. Default setting is No.

3.2.13 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

3.2.14 Read Cycle Time (0 – 10,000ms)

This is the delay between read polls of the device and is used to slow down polling of an IED. If the read cycle time is 1000 ms, the RTU will wait 1 second after polling the IED before polling it again. Default is 250ms

3.2.15 Write Cycle Time (0 – 10,000ms)

This is the period of time between which the RTU will issue an opcode 16 (preset multiple holding registers) to the IED to refresh all analog setpoints configured as "cyclic". Default is 1000ms

3.2.16 Time Format (Local, UTC)

Note: The coordination between UTC and local time is a feature that may be ignored. If you want your RTU to act as it always has in regards to time syncs, set Time Format to Local Time. See Time Configuration Settings in the Configuration chapter of the Config@WEB Secure Software Users Guide.

If you want to send time synchronization to this device, you must know whether the device will accept Local time or UTC time, then set this radio button to match.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.3 **Ethernet Comm Port Configuration**

Modbus Master is a protocol that communicates between the RTU and an IED.

From the Configuration screen, click Ethernet Comm. You will get a screen similar to Figure 2-3. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Modbus(M) from the Protocol drop-down menu as shown.

Figure 3-3 Modbus Master Ethernet Comm Port Configuration

Communication Port Configuration

Socket Number	Name	Protocol	Configure Protocol	Point Operations	Copy to Port
Socket #1	Socket 1	Modbus(M) 🗸	Socket 1	Configure	Сору
Socket #2	Socket 2	None - RTU-IED -	Socket 2	· ·	Сору
Socket #3	Socket 3	DNPM	Socket 3	-	Сору
Socket #4	Socket 4	Modbus(M) - MTU-RTU -	Socket 4	· ·	Сору
Socket #5	Socket 5	DNPR FM	Socket 5	-	Сору
Socket #6	Socket 6	Modbus(R)	Socket 6	-	Сору
Socket #7	Socket 7	None 💌	Socket 7	· ·	Сору
Socket #8	Socket 8	None 🗸	Socket 8	-	Сору
Socket #9	Socket 9	None 💌	Socket 9	-	Сору
Socket #10	Socket 10	None 💌	Socket 10	· ·	Сору
Socket #11	Socket 11	None 🗸	Socket 11	-	Сору
Socket #12	Socket 12	None 🔽	Socket 12	· ·	Сору
Socket #13	Socket 13	None 🗸	Socket 13	-	Сору
Socket #14	Socket 14	None 💌	Socket 14	· ·	Сору
Socket #15	Socket 15	None 💌	Socket 15	· .	Сору
Socket #16	Socket 16	None 🗸	Socket 16	·	Сору
Communicatio	n Associations Config]			Back

3.4 **Configure Protocol, Ethernet Comm**

Under the heading Configure Protocol, click Socket *n* to configure the Modbus(M) port. You may accept all defaults or fill in the form according to the information following the figure below.

Figure 3-4	Modbus(M)	Ethernet Comm	Channel	Configuration
------------	-----------	---------------	---------	---------------

Modbus(M) Communication Channel Setup

cket # : 1	Port N	ame : Sock	et 1
Number of IEDs	1		
Rx Timeout *	5000	(ms)	
Retries Before Failing Points	3 (ti	imes)	
Read Cycle Time	250	(ms)	
Write Cycle Time	1000	(ms)	
Time Format	 Loca 	і О итс	
	Cancel	Submit	
	Number of IEDs Rx Timeout * Retries Before Failing Points Read Cycle Time Write Cycle Time Time Format	Number of IEDs1Rx Timeout *5000Retries Before Failing Points3Read Cycle Time250Write Cycle Time1000	Number of IEDs 1 Rx Timeout * 5000 (ms) Retries Before Failing Points 3 (times) Read Cycle Time 250 (ms) Write Cycle Time 1000 (ms) Time Format I Local O UTC

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

3.4.1 Number of IEDs (0 - 32)

Enter the number of IEDs connected to this port. The default setting is 0.

Rx Timeout (0 – 60,000 msec) 3.4.2

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 5000 msec.

3.4.3 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

Read Cycle Time (0 - 10,000 ms)3.4.4

This is the delay between read polls of the device and is used to slow down polling of an IED. If the read cycle time is 1000 ms, the RTU will wait 1 second after polling the IED before polling it again. Default is 250ms

3.4.5 Write Cycle Time (0 - 10,000 ms)

This is the period of time between which the RTU will issue an opcode 16 (preset multiple holding registers) to the IED to refresh all analog setpoints configured as "cyclic". Default is 1000ms

3.4.6 Time Format (Local, UTC)

Note: The coordination between UTC and local time is a feature that may be ignored. If you want your RTU to act as it always has in regards to time syncs, set Time Format to Local Time. See Time Configuration Settings in the Configuration chapter of the Config@WEB Secure Software Users Guide.

If you want to send time synchronization to this device, you must know whether the device will accept Local time or UTC time, then set this radio button to match.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.5 **Point Operations**

From the Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

	Modbus(M) IED Configuration								
Socket	Socket # 1 Port Name : Soc								
IED #	IED Name	IP Address : Port No.	IED Address	1 Relative Register #	On Scan	Slave Config	Copy to IEDn	Export Import	
1	MB_IED_1	: 0	1	Ν	Y	Edit	Сору	Exp Imp	
								Back	

3.5.1 IED

The logical number of the IED on this communication channel.

3.5.2 IED Name

Click on the IED Name. A pop-up window will appear. See section 3.5.17.

3.5.3 IED Address : Port No.

Reflects the entry in the pop-up menu. See section 3.5.17.

3.5.4 1 Relative Register

Reflects the entry in the pop-up menu. See section 2.7.13.1.

3.5.5 On Scan

Reflects the entry in the pop-up menu. See section 2.7.13.1.

3.5.6 Slave Config

Click on Edit to edit the IED points. See section 3.5.26.

3.5.7 Copy to IEDn

This function copies everything in the IED configuration except the IED Name and the IED Address. Enter the number of the target IED and click Copy.

3.5.8 Export

This function copies everything in the IED configuration except the IED Name and the IED Address to an xml file template. The templates are protocol/IED specific. This template is stored in the RTU. When you choose Up/Download tab and click on "Get" (get files from RTU), you will transfer these templates to your PC.

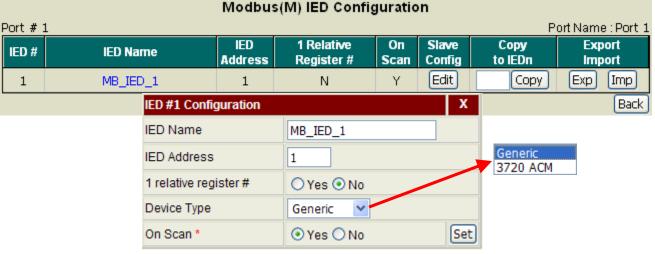
Choose from one of the existing file types (if present), or create a new xml file type. Click Save after your selection.

		Modbus(M) IED C	onfiguration				
Socket #	# 1						Port	Name : Socket 1
IED #	IED Name	IP Address : Port No.	IED Address	1 Relative Register #	On Scan	Slave Config	Copy to IEDn	Export Import
1	MB_IED_1	: 0	1	N	Y	Edit	Сору	Exp Imp
				Save Template			X	Back
				Replace Existing			*	
					(OR)		
				Create New				
	2 5 0						Save	

3.5.9 Import

The Imp button imports a configuration in xml format as shown below. Choose from one of the existing file types (if present) shown in the pull-down menu. If a new file type has been created under Export, that file type will also show up in the pull-down menu. When you set up another RTU, choose the Up/Download tab and click "Send" (send files to RTU), the template you save in the first RTU will be downloaded to the second RTU. Click Get after your selection below.

		Modbus(M) IED Co	onfiguration				
Socket # :	1						Port	Name : Socket 1
IED #	IED Name	IP Address : Port No.	IED Address	1 Relative Register #	On Scan	Slave Config	Copy to IEDn	Export Import
1	MB_IED_1	: 0	1	Ν	Y	Edit	Сору	Exp Imp
				Load Te	emplate	9		X Back
				Load Te	emplate	9		*
							(Get


Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

3.5.10 Serial IED Name & Address Configuration

When you click the name of the IED (in blue characters), a pop-up menu will appear, as shown below. Edit this pop-up window according to the directions below. After you edit and click Set, your choices are reflected as shown in the columns below.

Figure 3-6 IED Configuration

3.5.11 IED Name

Accept the default name or type a name of your choosing.

3.5.12 IED Address (1 – 255)

Enter the IED address. The default is 1.

3.5.13 1 relative register

Accept the default (No) if the registers will be listed on the configuration tables as 0 relative (ie. 0 - n). Click Yes if you wish to renumber the registers as 1 relative (ie. 1 - n). Modbus standard is 0 relative but some vendor's documentation lists points starting at 1. If 1 relative is selected, you must renumber the register numbers to reflect this as the protocol will subtract one (1) from the register number before using it to poll the IED.

3.5.14 Device Type

Modbus Master has been enhanced to handle the real-time subset of registers from the 3720 ACM meter. For the subset from 40031 (real-time KW phase A) through 40042 (real-time total power factor), register 40050 must be read to obtain the polarities of the data. Each bit of the polarity register indicates the polarity of one of the associated data points. For any block of registers which includes a register in the range 31 through 42, the Modbus Master will first read the polarity register (50) and retain it in memory for reference while processing the associated data registers. When the polarity bit for a point is set, its value is negated.

To activate this feature, the user must click on the Device Type selection box on the Modbus IED setup pop-up display (see above), and select the 3720 ACM option for each IED that is a 3720 meter. Having done this, any of the analog input registers in the range 31 through 42 will be processed as described above. Note that the user must also set up each 3270 meter to report all registers (not skipping unused registers) in order for the Modbus Master to locate the appropriate registers within the received data stream.

The default device type option is "Generic", which applies to all other IED types.

3.5.15 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled. This function will work on the fly. That is, select either Yes or No, then click Set. There is no need to Reset.

3.5.16 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

3.5.17 Ethernet IED Name & Address Configuration

When you click the name of the IED (in blue characters) a pop-up menu will appear, as shown below. Edit this pop-up window according to the directions below. After you edit and click Set, your choices are reflected as shown in the columns below.

					ioabas(Jingurau					
Socket	#1										Port	Name : Socket 1
IED #		IED N	lame	IP Address :	Port No.	IED Address	1 Relati Registe		On Scan	Slave Config	Copy to IEDn	Export Import
1		MB_I	ED_1	: 0		1	Ν		Y	Edit	Сору	Exp Imp
			IED # Config	uration				X				Back
			IED Name		MB_IED	_1						
			IP Address :	Port No.			: 0			ModbusT	CP Over TCP	
			IED Address	3	1					MOUDUS	over rep	
			Protocol Typ	e	Modbu	s Over TC	Р 🗸					
			1 relative reg	gister #	○ Yes	⊙ No				Generic		
			Device Type		Generic	. 🗸			3	3720 ACI	4	
			On Scan *		⊙ Yes	O No		Set	3			

Figure 3-7 IED Configuration

3.5.18 IED Name

Accept the default name or type a name of your choosing.

3.5.19 IP Address : Port No.

Enter the IP address of the Ethernet Modbus slave. Port number 502 has been reserved for Modbus, but you may use any port number that does not conflict with standard port numbers.

3.5.20 IED Address (1 – 255)

Enter the IED address. The default is 1.

3.5.21 Protocol Type

You must determine whether the type is native Modbus TCP.

- a. "ModbusTCP" includes a six-byte preamble containing a sequence number that the IED should echo back. For this protocol, the User may set the IED ID to zero, since the IP address determines the actual address. The code still checks the ID, however, so the User must enter either a zero or the actual ID matching that of the IED.
- b. "Modbus over TCP" encapsulates the serial Modbus RTU message inside a TCP/IP envelope.

3.5.22 1 relative register

See section 2.7.13.1.

3.5.23 Device Type

See section 2.7.13.1.

3.5.24 On Scan

See section 2.7.13.1.

3.5.25 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

3.5.26 Slave Configuration Edit

3.5.27 Slave Config

Click on Edit to continue. A screen similar to Figure 2-10 will appear.

	Modbus(M) IEE) Configuration	n
Note: This will be "Port" for serial channels, and "Socket"	Port # 1 IED # : 1	Port Nar IED Name :	me : Port 1 MB_IED_1
for Ethernet channels.	Туре	Number	Edit
	Analogs Inputs	16	Edit
	Binary Inputs	16	Edit
	Counters	16	Edit
	Analog Outputs	16	Edit
	Digital Outputs	16	Edit
	Floating Point Inputs	16	Edit
			Back

Figure 3-8 IED Configuration

3.5.28 Type

The type of point.

3.5.29 Number

Enter the number of points from your IED.

3.5.30 Edit

Click on the Edit button to edit points.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

3.5.31 IED Analog Input Configuration

From the Modbus Master IED Configuration screen, click on Edit for Analogs. A screen similar to Figure 2-13 will appear.

		PAR	vabus(r	п) Апа	iog mput coi	inguiation				
Port # IED #	. –									ie : Port 1 MB IED 1
Pnt	Name	OPCODE	Reg #	[ype	C Min	C Max	EGU Mir	EGU Max	FILE	Param
0	IED_ANALOG 0	3 💌	1024	16 -	-32767	32767	-100	100	0	0
1		3 💌	1025			32767	-100		0	O
2	Click on Header to Change All	3 💌	111/2	ick on a	Header to	32767		ck on Heade	er to	
2	Change All X	3 💌	102	uto Incre		32767	1-IOA 💻	ange All		
4	OPCODE 3 💌 Set	3 💌	102 Va	alue	Set	32767	-100	ange All	Se	
5	3 4	3 💌	102			32767	-100	lue	36	
6	20	3 💌	103 an	d/or ch	ange	32767	-100 an	d/or change		
7	and/or change	3 -	1031	16 -	-32767	32767	-100	100	0	0
8	IED_ANALOG 8	3 🔳	1032	16 🔽	-32767	32767	-100	100	0	0
9	IED_ANALOG 9	3 🔻	1033	16 💌	-32767	32767	-100	100	0	0
10	IED_ANALOG 10	3 🔻	1034	16 💌	-32767	32767	-100	100	0	0
11	IED_ANALOG 11	3 💌	1035	16 💌	-32767	32767	-100	100	0	0
								Can	:el	Submit

Figure 3-9 Modbus Master Analog Input Configuration

3.5.32 Pnt

Protocol logical point number. This number cannot be changed.

3.5.33 Name

Enter the name of the point (or accept the default name).

3.5.34 OPCODE (3, 4, 20)

Enter the opcode used to poll the point (or accept the default). All entries in this column may be changed at once by clicking on the header.

3.5.35 Reg

Enter the Register number of the point (or accept the default). Click on the header to Auto-increment and/or change individual values.

3.5.36 Type

Change the type to define how the data is formatted in the response from the IED. The default type is 16 bit integer (1 register).

16 – 16 bit integer. Request one holding register, response is one holding register.

32-32 bit integer. Two holding registers, most significant word in the 1st holding register and the lease significant word in the 2nd holding register. Request is two holding registers, response contains two holding registers.

FP - 32 bit single precision IEEE 754-1985 Floating Point number. Two holding registers, most significant word in the 1st holding register and least significant word in 2nd holding register. The byte order is sign and exponent, most significant byte of mantissa, middle byte of mantissa, and least significant byte of mantissa. Request is two holding registers, response contains two holding registers.

F2 - just like FP except the request and response. Request is one holding register, response is two holding registers. The firmware expects this type to be used in a contiguous range of registers. It can't be mixed with other types. Points in this range may be mapped or unmapped. Unmapped points are treated like F2 type analogs. This point type is scanned separately from other analog points as it ignores the MODBUS protocol document.

All entries in this column may be changed at once by clicking on the header.

3.5.37 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

3.5.38 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

3.5.39 EGU Min

Enter a minimum engineering unit value for the point that will be used to scale the value when viewed. All entries in this column may be changed at once by clicking on the header.

3.5.40 EGU Max

Enter a maximum engineering unit value for the point that will be used to scale the value when viewed. All entries in this column may be changed at once by clicking on the header.

3.5.41 FILE

This is the file number to be used when opcode 20 is selected. If opcode 20 is not selected for this point the value is not used. All entries in this column may be changed at once by clicking on the header.

3.5.42 Param

Enter the Param number of the point or accept the default number. All entries in this column may be changed at once by clicking on the header. This value is not currently used. It is reserved to support odd implementations of the analog data types.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.5.43 IED Status Configuration

From the Modbus Master IED Configuration screen, click on Edit for Binary Inputs. A screen similar to Figure 2-14 will appear.

	Modbus	(M) Status Configura	ation			
Port # 1 IED # : 1					ort Name : Port 1 Name : MB_IED_1	
Point	Name		OPCODE	Reg/Point #		
-1	COMM_STS					
0	IED_STS 0	Click on Header to	3 💌	0	0 🖌 0	
1	IED_STS 1	Change All Opcodes	3 💙	Click on Head	ler to Change All	
2	IED_STS 2	Change All X OPCODE 1 ☑ Set	3 💙	Change All	✓ X	
3	IED_STS 3	1	3 💙	Value	Set	
4	IED_STS 4	2 3 4	3 💌	or select drop	down	
5	IED_STS 5	20	3 💌		-down	
6	IED_STS 6	And/or individual	3 💌	Change All	✓ X	
7	IED_STS 7	Opcodes	3 💌	Bit 0	Set	
8	IED_STS 8		3 💙	to change to A	Auto Increment	
9	IED_STS 9		3 💙	Change All	✓ X	
10	IED_STS 10		3 💙	1		\sim
11	IED_STS 11		3 💙	11	0 💌 0	
12	IED_STS 12		3 💙	12	0 🖌 0	
13	IED_STS 13		3 💙	13	0 💙 0	
14	IED_STS 14		3 💙	14	0 🖌 0	
15	IED_STS 15		3 💙	15	0 🖌 0	
				Car	cel Submit)

Figure 3-10 Modbus Master Status Input Configuration

3.5.44 Point

Protocol logical point number. This number cannot be changed. The COMM_STS point is automatically assigned to show whether the Modbus IED is in communication failure or not.

3.5.45 Name

Enter the name of the point (except for COMM_STS which cannot be changed) or accept the default name.

3.5.46 OPCODE (1, 2, 3, 4, 20)

Enter the opcode used to poll the point (or accept the default). All entries in this column may be changed at once by clicking on the header.

3.5.47 Reg/Point

Binary input points configured to use opcodes 1 or 2 are bit-oriented, not register-oriented. The header of the column has been changed from Register # to Reg/Point #, since it is possible to define both bit-oriented and register-oriented points on the same page. The User should be aware that when using opcodes 1 or 2, the Reg/Point # column represents the point number. For example, status input point 0 is addressed as point 0, regardless of the starting register number on the Modbus RTU side. When opcodes 3 or 4 are used, the User enters the register numbers, and should expect the points to be packed 16 bits to a register.

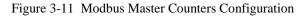
3.5.48 BIT

This field is used when polling status points by holding register (opcode 3 or 4). Enter the BIT number within the register that will correspond to this status point (or accept the default). All entries in this column may be changed at once by clicking on the header.

3.5.49 File

This is the file number to be used when opcode 20 is selected. If opcode 20 is not selected for this point the value is not used. All entries in this column may be changed at once by clicking on the header.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.5.50 IED Counters Configuration

From the Modbus Master IED Configuration screen, click on Edit for Counters. A screen similar to Figure 2-15 will appear.

	Mo	dbus(M)	Counters Co	nfiguration				
Port # 3 IED # : :	1						Name : Port 3 e : MB_IED_1	
Point	Name	OPCODE	Register #	Туре		FILE	Param	
0	IED_ACC_ 0	3 💌	0	16	*	0	0	
1	IED_ACC_1	3 💌	1	16	~	\square	0	
2		3 💌	² Click on	Header to	*		٩	L
5	Click on Header to Change All	3 💌	3 Auto-Inc		~		on Header to	,)
4		3 💌	4 Auto Incr		~	Change Change		Х
5	Change All X	3 💌	5 Value	Set	~	Value		Set
6	Value Set 📃	3 💌	6 and/or ch	ange	<			
7		3 💌	7		*	and/or	change	
8	and/or change	3 💌	8	16	*		0	
9	IED_ACC_9	3 💌	9	16	*	0	0]
10	IED_ACC_ 10	3 💌	10	16	~	0	0	
11	IED_ACC_11	3 4	11	16 32			0	
12	IED_ACC_ 12	20	12	Power Meters SquareD CM2000		0	0	
13	IED_ACC_ 13	3 💌	13	SquareD CM2000 Incr		0	0	
14	IED_ACC_ 14	3 💌	14	SquareD CM4000 ION		0	0	
15	IED_ACC_ 15	3 💌	15	16	~	0	0	
						Cancel	Submit)

3.5.51 Point

Protocol logical point number. This number cannot be changed.

3.5.52 Name

Enter the name of the point (or accept the default name).

3.5.53 OPCODE (3, 4, 20)

Enter the opcode used to poll the point (or accept the default). All entries in this column may be changed at once by clicking on the header.

3.5.54 Register

Enter the Register number of the point (or accept the default). Click on the header to Auto-increment and/or change individual values.

81

82

3.5.55 Type

Change the type to define how the data is to be formatted. Default is 16 bits per point (1 register). All entries in this column may be changed at once by clicking on the header.

3.5.55.1 16

16-bit binary counter in one Modbus register

3.5.55.2 32

32-bit binary counter in two successive ModBus registers, first register treated as containing the high-order 16 bits. Selecting 32 bits will cause the protocol to combine the value from the next logical register with that of the current register value. I.e., If you configure point 1 to be a 32 bit point, the RTU will poll the IED for registers 1 and 2 and combine their values to create 1 32 bit number. Point 2 then should be configured to get register number 3 instead of register 2.

3.5.55.3 Power Meters, Square D CM2000, Square D CM2000 Incr., Square D CM4000

All counters are treated as three 16-bit registers. The two bytes of each register are reversed. First register is divided by 1000 to convert from watts to kilowatts. The second register is multiplied by 1000 and added to the first. The third register is multiplied by 100,000 and added to the previous result. The resulting value runs from 0 to 999,999,999 kilowatts.

3.5.55.4 ION

ABB ION meter accumulators are received in two registers. The first register is multiplied by 10,000 and added to the second register. Counters run from 0 to 99,999,999.

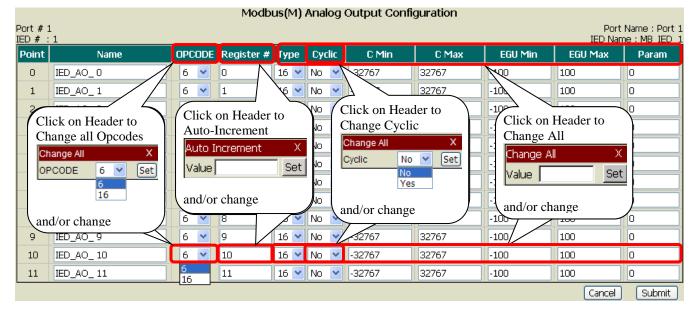
3.5.56 FILE

This is the file number to be used when opcode 20 is selected. If opcode 20 is not selected for this point the value is not used. All entries in this column may be changed at once by clicking on the header.

3.5.57 Param

Enter the Param number of the point or accept the default number. All entries in this column may be changed at once by clicking on the header. This value is not currently used. It is reserved to support odd implementations of the accumulator data types.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.5.58 IED Analog Output Configuration

From the Modbus Master IED Configuration screen, click on Edit for Analog Output. A screen similar to Figure 2-16 will appear.

Figure 3-12 Modbus Master Analog Output Configuration

3.5.59 Point

Protocol logical point number. This number cannot be changed.

3.5.60 Name

Enter the name of the point (or accept the default name).

3.5.61 OPCODE (6, 16)

Enter the opcode used to command the point (or accept the default). All entries in this column may be changed at once by clicking on the header.

3.5.62 Register

Enter the Register number of the point (or accept the default). Click on the header to Auto-increment and/or change individual values.

3.5.63 Type

Change the type to define how the data is to be formatted. All entries in this column may be changed at once by clicking on the header.

3.5.63.1 16

16-bit binary counter in one Modbus register (default)

3.5.63.2 32

Note: To use this type, OPCODE for this point must be 16.

Selecting 32 bits will cause the protocol to write two consecutive holding registers for a 32 bit long word analog output value. The 4 bytes of the 32 bit long word is written in the following order:

Holding Register

N+0	Most significant byte of most significant word
N+0	Least significant byte of most significant word
N+1	Most significant byte of least significant word
N+1	Least significant byte of least significant word

For example, if you were writing a hex value of 12345678, to holding registers 7 and 8 in the slave with an RTU address of 5,

The bytes in the protocol, if examined with a protocol analyzer, would be:

- 05 RTU address
- 10 Write Multiple registers
- 00 Starting address most significant byte
- 07 Starting address least significant byte
- 00 Quantity of registers most significant byte
- 02 Quantity of registers least significant byte
- 04 Byte count
- 12 Most significant byte of most significant word
- 34 Least significant byte of most significant word
- 56 Most significant byte of least significant word
- 78 Least significant byte of least significant word
- XX-CRC-16
- XX CRC-16

The values in the holding registers would read the following:

Holding register 7, 1234 (Most significant word)

Holding register 8, 5678 (Least significant word)

3.5.64 Cyclic

Enter "Yes" to periodically reissue the setpoint command to the AO point in the IED. See the section on Communication Channel Configuration on configuring the "Write Cycle Time". If left to the default of No the RTU will issue an AO command to the IED only after receiving a new AO value for that point from the GUI or a master protocol.

Note: If Cyclic is set to "Yes", then OPCODE must be set to 16.

3.5.65 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

3.5.66 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

3.5.67 EGU Min

Enter a minimum engineering unit value for the point that will be used to scale the value when viewed. All entries in this column may be changed at once by clicking on the header.

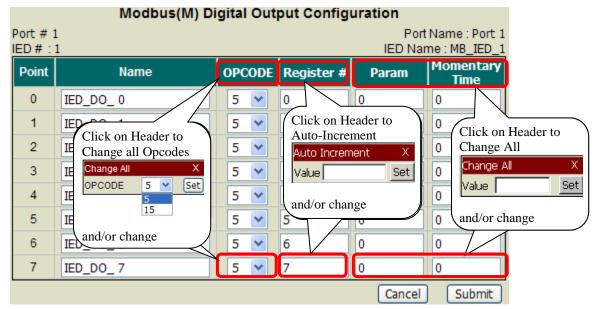
3.5.68 EGU Max

Enter a maximum engineering unit value for the point that will be used to scale the value when viewed. All entries in this column may be changed at once by clicking on the header.

3.5.69 Param

Enter the Param number of the point or accept the default number. All entries in this column may be changed at once by clicking on the header.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.5.70 IED Digital Output Configuration

Click on Edit for Digital Output. A screen similar to Figure 2-17 will appear.

3.5.71 Point

Protocol logical point number. This number cannot be changed.

3.5.72 Name

Enter the name of the point (or accept the default name).

3.5.73 OPCODE (5, 15)

Enter the opcode used to command the point (or accept the default). All entries in this column may be changed at once by clicking on the header.

3.5.74 Register

Enter the Register number of the point (or accept the default). Click on the header to Auto-increment and/or change individual values.

3.5.75 Param

Enter the Param number of the point or accept the default number. All entries in this column may be changed at once by clicking on the header.

3.5.76 Momentary Time

If anything other than 0 is entered, the following sequence will occur: 1) Close control received by Modbus(M) to be sent to IED; 2) Close is sent by MBM; 3) MBM waits until confirmation is received; 4) If confirmation is not received, do nothing; 5) If confirmation received, wait the number of msec entered, then send an Open command to the same point on the same IED. Default is 0.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.5.77 IED Floating Point Input Configuration

From the Modbus Master IED Configuration screen, click on Edit for Floating Points Inputs. A screen similar to the one below will appear.

Figure 3-14	Modbus Master Float	ting Point Ir	nput Configuration
			-r

	Mod	bus(M) Floating Point Inp	ut Configu	ration			
	ort # 1 D # : 1				Name : Pe ne : MB_IE		
Pnt	Name			OPCODE		Type	
0	IED_FLT 0			3 >/	0	FP	
1	IED_FLT 1			24	1		
2	IED_FLT 2	Click on Header to Change All	Click on He Auto-Incren		2	Click c Change	on Header to e All
3	IED_FLT 3	Change All X	Auto Increme		З	Change	
4	IED_FLT 4		Value	Set	4	Value	Set
5	IED_FLT 5	Value Set	and/or chang	ge	5	and/or	change
6	IED_FLT 6	and/or change	$\overline{}$	3	6	FP	
7	IED_FLT 7			3 🗸	7	FP 🗸	
8	IED_FLT 8			3 💌	8	FP 💌	
9	IED_FLT 9			3 💙	9	FP 🛩	
10	IED_FLT 10			3 💙	10	FP 💌	
11	IED_FLT 11			3 💌	11	FP 🛩	
12	IED_FLT 12			3 4	12	FP F2	
13	IED_FLT 13			20	13	FR	
14	IED_FLT 14			3 🚩	14	FP 💌	
15	IED_FLT 15			3 💌	15	FP 💌	
				Cancel	Subm	nit	

Modbus(M) Floating Point Input Configuration

3.5.78 Pnt

Protocol logical point number. This number cannot be changed.

3.5.79 Name

Enter the name of the point (or accept the default name).

3.5.80 OPCODE (3, 4, 20)

Enter the opcode used to poll the point (or accept the default). All entries in this column may be changed at once by clicking on the header.

3.5.81 Reg

Enter the Register number of the point (or accept the default). Click on the header to Auto-increment and/or change individual values.

3.5.82 Type (FP, F2, FR)

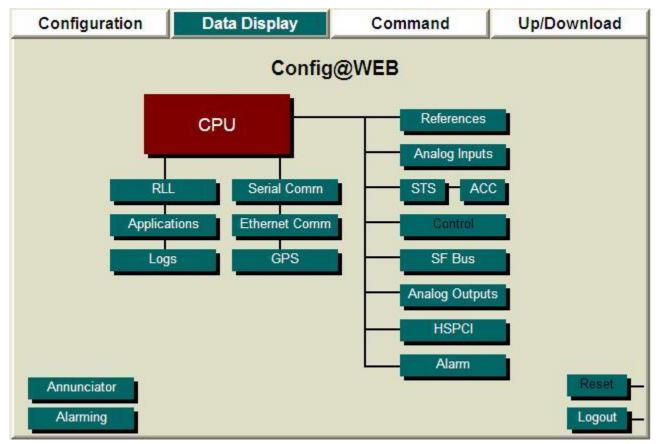
Change the type to define how the data is formatted in the response from the IED. The default type is FP. All entries in this column may be changed at once by clicking on the header.

FP - 32 bit single precision IEEE 754-1985 Floating Point number. Two holding registers, most significant word in the 1st holding register and least significant word in 2nd holding register. The byte order is sign and exponent, most significant byte of mantissa, middle byte of mantissa, and least significant byte of mantissa. Request is two holding registers, response contains two holding registers.

F2 - just like FP except the request and response. Request is one holding register, response is two holding registers. The firmware expects this type to be used in a contiguous range of registers. It can't be mixed with other types. Points in this range may be mapped or unmapped. Unmapped points are treated like F2 type analogs. This point type is scanned separately from other analog points as it ignores the MODBUS protocol document.

FR – Type "FR" (float reversed) has the high-order half of the 32-bit floating point value in the second register (FP with words reversed).

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

3.6 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 3-15 Data Display Screen

89

Click Serial Comm to get the screen shown in Figure 2-19.

Display Communication Port Data								
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data		
Port #1	К	K	Port 1	DNPR	View	Port Data		
Port #2	К	K	Port 2	DNPR	View	Port Data		
Port #3	К	К	Port 3	Modbus(M)	View	Port Data		
Port #4	К	К	Port 4	None	View	Port Data		
Port #5	К	К	Port 5	None	View	Port Data		
Port #6	К	К	Port 6	None	View	Port Data		
Port #7	К	К	Port 7	None	View	Port Data		
Port #8	К	ĸ	Port 8	None	View	Port Data		
Port #9	К	ĸ	Port 9	None	View	Port Data		
Port #10	К	ĸ	Port 10	None	View	Port Data		
Port #11	К	ĸ	Port 11	None	View	Port Data		
Port #12	К	К	Port 12	None	View	Port Data		

3.6.1 Port Number

Physical Port number of the RTU.

3.6.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

3.6.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

3.6.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

3.6.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

3.6.3 Name

The port name given during configuration or default name accepted.

3.6.4 Protocol

The configured protocol for this port.

3.6.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

3.6.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

Navigation

Click the Back button to return to the previous screen.

3.6.7 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 3-17 Modbus Master Communication Counters Display

Modbus(M) Communication Counters Display

Port #:1		Port Name : Port 1
Point	Counter Name	Counts
1	Messages Sent	0
2	Good Replies	0
3	Bad/No Replies	0
4	Write Failures	0
5	RX Timeouts	0
6	IB Timer Violations	0
7	Security Errors	0
8	Hardware DCD Errors	0
9	Hardware CTS Errors	0
10	Overrun Errors	0
11	Framing Errors	0
12	Parity Errors	0
	Configure n Counters View mm Counters Reset	
		Back

3.6.8 Point Number

A logical point number for reference only.

3.6.9 Counter Name

The following counters are monitored:

3.6.9.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

3.6.9.2 Good Replies

This indicates the cumulative number of good replies since the last reset or power-up.

3.6.9.3 Bad/No Replies

This indicates the cumulative number of transmitted frames that did not receive a valid response since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

3.6.9.4 Write Failures

This indicates the cumulative number of times that a write has failed. This could be a force coil, preset register or preset multiple register used in controlling AO or DO IED points.

3.6.9.5 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

3.6.9.6 IB Timer Violations

This indicates the cumulative number of Interbyte timer violations since the last reset or power-up. This count can be affected by the setting of the Interbyte Time in configuration.

3.6.9.7 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

3.6.9.8 Hardware DCD Errors

This indicates the cumulative number of DCD errors since the last reset or power-up.

3.6.9.9 Hardware CTS Errors

This indicates the cumulative number of CTS errors since the last reset or power-up.

3.6.9.10 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

3.6.9.11 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

3.6.9.12 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

3.6.10 Counts

The counts for each type of Counter.

92

3.6.11 Data Trap

Please see the Config@WEB Secure Software Users Guide.

3.6.12 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

Modbus(M) IED Comm Counters Display

Port # : 2 Port Name : Port							e : Port 2		
IED #	IED Name	Messages Sent	Valid Replies	No Replys	Timeouts	Security Errors	Framing Errors	Overrun Errors	Parity Errors
1	MB_IED_1	0	0	0	0	0	0	0	0
2	MB_IED_2	0	0	0	0	0	0	0	0
									Done

3.6.12.1 IED

The number of the IED

3.6.12.2 IED Name

The name of the IED

3.6.12.3 Messages Sent

Messages sent to this IED since the last reset or since the last time the counters were cleared.

3.6.12.4 Valid Replies

Valid messages received from this IED since the last reset or since the last time the counters were cleared.

3.6.12.5 No Replies

The number of no replies from this IED since the last reset or since the last time the counters were cleared.

3.6.12.6 Timeouts

The number of timeouts from this IED since the last reset or since the last time the counters were cleared.

3.6.12.7 Security Errors

The number of security errors from this IED since the last reset or since the last time the counters were cleared.

3.6.12.8 Framing Errors

The number of framing errors from this IED since the last reset or since the last time the counters were cleared.

3.6.12.9 Overrun Errors

The number of overrun errors from this IED since the last reset or since the last time the counters were cleared.

3.6.12.10 Parity Errors

The number of parity errors from this IED since the last reset or since the last time the counters were cleared.

3.6.13 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

3.6.14 IED Data Display

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Modbus(M) IED Data Display					
Port # 1			F	ort Nam	e : Port 1
IED #	IED Name	IED Address	1 Relative Register #	On Scan	Slave Data
1	MB_IED_1	1	N	Y	View
					Back

E'	N.C. 11.	N.C	TED	D'1.
Figure 3-18	Modbus	Master	IED	Display

3.6.15 IED

The logical number of the IED on this communication channel.

3.6.16 IED Name

The name that was chosen, or accepted as default, during configuration.

3.6.17 IED Address

The IED Address chosen during configuration.

3.6.18 1 Relative Register

Displays whether or not 1 relative register # was chosen during configuration.

3.6.19 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

3.6.20 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the Modbus Master IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

Figure 3-19 Modbus Master IED Display

Modbus(M) IED Data Display					
Port # : 2 IED # : 1	-	ort Name : Port 2 Jame : MB_IED_1			
Туре	Number	View			
Analog Inputs	32	View			
Binary Inputs	32	View			
Counters	32	View			
Analog Outputs	24	View			
Digital Outputs	16	View			
Floating Point Inputs	16	View			
		Back			

3.6.21 Type

The type of point.

3.6.22 Number

The number of points from your IED.

3.6.23 View

Click the View button to view points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the previous screen.

3.6.23.1 Analog Inputs

From the Modbus Master IED Display screen, click View for Analog Inputs to get the screen shown in Figure 2-24.

Figure 3-20	Modbus	Master	Analog	Inputs	Display

ort # : 3 ED # : 1					ort Name : Port Name : MB_IED_
		Page1 of 1 Go To	Go		
Point	Reg	Point Name	Point Status	Point Value	Point Counts
0	0	IED_ANALOG 0	F	0.000	-3276
1	1	IED_ANALOG 1	F	0.000	-3276
2	2	IED_ANALOG 2	F	0.000	-3276
3	3	IED_ANALOG 3	F	0.000	-3276
4	4	IED_ANALOG 4	F	0.000	-3276
5	5	IED_ANALOG 5	F	0.000	-3276
6	6	IED_ANALOG 6	F	0.000	-3276
7	7	IED_ANALOG 7	F	0.000	-3276
8	8	IED_ANALOG 8	F	0.000	-3276
9	9	IED_ANALOG 9	F	0.000	-3276
10	10	IED_ANALOG 10	F	0.000	-3276
11	11	IED_ANALOG 11	F	0.000	-3276
12	12	IED_ANALOG 12	F	0.000	-3276
13	13	IED_ANALOG 13	F	0.000	-3276
14	14	IED_ANALOG 14	F	0.000	-3276
15	15	IED_ANALOG 15	F	0.000	-3276

3.6.24 Point

Protocol logical point number.

3.6.25 Reg

The Register number as configured.

3.6.26 Point Name

The name of the point assigned during configuration.

3.6.27 Point Status

Please see the Config@WEB Secure Software Users Guide.

3.6.28 Point Value

The engineering unit (EGU) value that has been calculated based on min/max EGU scaling entered during configuration.

3.6.29 Point Counts

The counts from the IED.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to

the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

3.6.29.1 Status Inputs

From the Modbus Master IED Display screen, click View for Binary Inputs to get the screen shown in Figure 2-25.

			Modbus(M) Status I	Inputs Display	,			
ort # : 3 :D # : 1	}		Page1 of 2	Go To	Go			Port Name : Port IED Name : MB_IED_ Next >
Point	Reg	Bit	Point Name	Point Status	Point State	•	Total Changes	Last Change
-1	0	0	COMM_STS		Closed	•	1	10/02/2012 08:04:02.094
0	0	0	IED_STS 0	F	Open	•	0	//::
1	1	0	IED_STS 1	F	Open	•	0	//::
2	2	0	IED_STS 2	F	Open	•	0	//::
3	3	0	IED_STS 3	F	Open		0	//::
4	4	0	IED_STS 4	F	Open	•	0	//::
5	5	0	IED_STS 5	F	Open	•	0	//::
6	6	0	IED_STS 6	F	Open	•	0	//::
7	7	0	IED_STS 7	F	Open	•	0	//::
8	8	0	IED_STS 8	F	Open	•	0	//::
9	9	0	IED_STS 9	F	Open	•	0	//::
10	10	0	IED_STS 10	F	Open	•	0	/!:::
11	11	0	IED_STS 11	F	Open	•	0	//::
12	12	0	IED_STS 12	F	Open	•	0	//::
13	13	0	IED_STS 13	F	Open	•	0	//::
14	14	0	IED_STS 14	F	Open	•	0	//::

N. II. D' 1

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not the comm. channel is operational. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

3.6.30 Point

Protocol logical point number.

3.6.31 Reg

The Register number as configured.

3.6.32 Bit

The Bit number as configured.

3.6.33 Point Name

The name of the point assigned during configuration.

3.6.34 Point Status

Please see the Config@WEB Secure Software Users Guide.

3.6.35 Point State

Indicates that point is either OPEN or CLOSED.

98

3.6.36

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

3.6.37 Total Changes

Displays the number of changes since last Reset.

3.6.38 Last Change

Displays the Date and Time of the last change since reset.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

3.6.38.1 Counter Inputs

From the Modbus Master IED Display screen, click View for Counters to get the screen shown in Figure 2-26.

Figure 3-22	Modbus	Master	Accumulator	Inputs Display
			I - A I A	

		Modbus(M) Accumulate	or Inputs Display	
Port # : 3 IED # : 1	1		IE	Port Name : Port 3 ED Name : MB_IED_1
		Page1 of 1	Go To Go	
Point	Reg	Point Name	Status	Count
1	0	IED_ACC_ 0	F	0
2	1	IED_ACC_ 1	F	0
3	2	IED_ACC_ 2	F	0
2 3 4 5	3	IED_ACC_ 3	F	0
	4	IED_ACC_ 4	F	0
6	5	IED_ACC_ 5	F	0
7	6	IED_ACC_ 6	F	0
8	7	IED_ACC_ 7	F	0
9	8	IED_ACC_ 8	F	0
10	9	IED_ACC_ 9	F	0
11	10	IED_ACC_ 10	F	0
12	11	IED_ACC_ 11	F	0
13	12	IED_ACC_ 12	F	0
14	13	IED_ACC_ 13	F	0
15	14	IED_ACC_ 14	F	0
16	15	IED_ACC_ 15	F	0
				Back

3.6.39 Point

Protocol logical point number.

3.6.40 Reg

The Register number as configured.

3.6.41 Point Name

The name of the point assigned during configuration.

3.6.42 Status

Please see the Config@WEB Secure Software Users Guide.

3.6.43 Count

The accumulated count.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

3.6.43.1 Analog Outputs

From the Modbus Master IED Display screen, click View for Analog Outputs to get the screen shown in Figure 2-27.

Figure 3-23 Modbus Master Analog Outputs Display

		Modbus(M) Analog C	outputs Display		
Port # : Po IED # : 1	ort # : 3				rt Name : Port 3 ame : MB_IED_1
		Page1 of 1	Go To Go		
Point	Reg	Point Name		Point Status	Point Value
0	0	IED_AO_ 0			-100.000
1	1	IED_AO_ 1			-100.000
2 3	2	IED_AO_ 2			-100.000
3	3	IED_AO_ 3			-100.000
4	4	IED_AO_ 4			-100.000
5	5	IED_AO_ 5			-100.000
6	6	IED_AO_ 6			-100.000
7	7	IED_AO_ 7			-100.000
8	8	IED_AO_ 8			-100.000
9	9	IED_AO_ 9			-100.000
10	10	IED_AO_ 10			-100.000
11	11	IED_AO_ 11			-100.000
12	12	IED_AO_ 12			-100.000
13	13	IED_AO_ 13			-100.000
14	14	IED_AO_ 14			-100.000
15	15	IED_AO_ 15			-100.000
					Back

3.6.44 Point

Protocol logical point number.

3.6.45 Reg

The Register number as configured.

3.6.46 Point Name

The name of the point assigned during configuration.

3.6.47 Point Status

Please see the Config@WEB Secure Software Users Guide.

3.6.48 Point Value

The engineering unit (EGU) value.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

3.6.48.1 Digital Outputs

From the Modbus Master IED Display screen, click View for Digital Outputs to get the screen shown in Figure 2-25.

Figure 3-24	Modbus Master Status Inputs Display
Madhu	s(M) Binary Outputs Display

Modbus(M) Binary Outputs Display					
ort # : 3 ED # : 1			IE	Port Name : ED Name : MB_	
	Page1 of 1	Go To	Go		
Point	Point Name		Point Status	Point State	•
1	IED_DO_ 0		U	Open	•
2	IED_DO_ 1		U	Open	•
3	IED_DO_ 2		U	Open	•
4	IED_DO_ 3		U	Open	•
5	IED_DO_ 4		U	Open	•
6	IED_DO_ 5		U	Open	•
7	IED_DO_ 6		U	Open	•
8	IED_DO_ 7		U	Open	•
9	IED_DO_ 8		U	Open	•
10	IED_DO_ 9		U	Open	•
11	IED_DO_ 10		U	Open	•
12	IED_DO_ 11		U	Open	•
13	IED_DO_ 12		U	Open	•
14	IED_DO_ 13		U	Open	•
15	IED_DO_ 14		U	Open	•
16	IED_DO_ 15		U	Open	•
					Back

S2200-AAA-00004

3.6.49 Point

Protocol logical point number.

3.6.50 Point Name

The name of the point assigned during configuration.

3.6.51 Point Status

Please see the Config@WEB Secure Software Users Guide.

3.6.52 Point State

Indicates that point is either OPEN or CLOSED.

3.6.53 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

3.6.53.1 Floating Point Inputs

Click View for Floating Point Inputs to get a screen similar to the one below.

Figure 3-25 Modbus Master Floating Point Inputs Display

Modbus(M) Floating Point Inputs Display

modulus(m) Floating Fornt inputs Display					
Port # : 3				Port Name : Port 3	
IED # : 1			IE	D Name : MB_IED_1	
		Page1 of 1 Go To Go			
Point	Reg	Point Name	Point Status	Value	
1	0	IED_FLT 0	NF	0.000	
2 3	1	IED_FLT 1	NF	0.000	
3	2	IED_FLT 2	NF	0.000	
4 5	3	IED_FLT 3	NF	0.000	
5	4	IED_FLT 4	NF	0.000	
6	5	IED_FLT 5	NF	0.000	
7	6	IED_FLT 6	NF	0.000	
8	7	IED_FLT 7	NF	0.000	
9	8	IED_FLT 8	NF	0.000	
10	9	IED_FLT 9	NF	0.000	
11	10	IED_FLT 10	NF	0.000	
12	11	IED_FLT 11	NF	0.000	
13	12	IED_FLT 12	NF	0.000	
14	13	IED_FLT 13	NF	0.000	
15	14	IED_FLT 14	NF	0.000	
16	15	IED_FLT 15	NF	0.000	
				Back	

3.6.54 Point

Protocol logical point number.

3.6.55 Reg

The Register number as configured.

3.6.56 Point Name

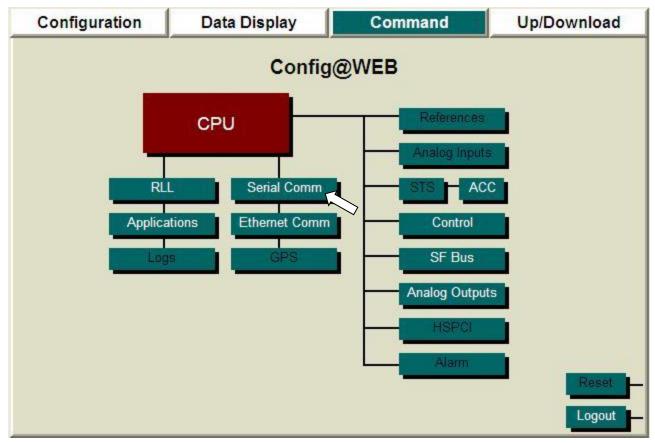
The name of the point assigned during configuration.

3.6.57 Point Status

Please see the Config@WEB Secure Software Users Guide.

3.6.58 Point Value

The engineering unit (EGU) value.


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

3.7 Command Serial Comm

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

Figure 3-26 Command Tab Page

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2200 manual. Under Command Port Data, click Port Data.

Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode
Port #1	К	К	Port 1	Modbus(M)	Port Data	Normal 💌
Port#2	К	К	Port 2	None	Port Data	Normal 🕑
Port#3	К	К	Port 3	None	Port Data	Normal 💌
Port #4	К	К	Port 4	None	Port Data	Normal 💌
Port #5	К	К	Port 5	None	Port Data	Normal 💌
Port#6	К	К	Port 6	None	Port Data	Normal 💌
Port #7	К	К	Port 7	None	Port Data	Normal 💌
Port #8	К	К	Port 8	None	Port Data	Normal 💌
Port#9	К	К	Port 9	None	Port Data	Normal 💌
Port#10	К	К	Port 10	None	Port Data	Normal 💌
Port#11	К	К	Port 11	None	Port Data	Normal 💌
Port#12	К	К	Port 12	None	Port Data	Normal 💌

Figure 3-27 Serial Comm Command Communications Port Data

The resultant screen will be similar to Figure 2-31. Click on the Command button as shown.

Figure 3-28	Modbus Master IED Command
-------------	---------------------------

Modbus(M) IED Command					
Port # 1 Port Name : Port 1					
IED #	IED Name	IED Address	1 Relative Register #	On Scan	Slave Data
1	MB_IED_1	1	N	Y	Command H
					Back

The resultant screen will be similar to Figure 2-32. If the outputs exist on the IED, and if you have them configured as in this example, you will be able to command Analog Outputs and Digital Outputs.

Figure 3-29	Modbus	Master	IED	Command
-------------	--------	--------	-----	---------

Modbus(M) IED Command					
Port # : 1 IED # : 1		ort Name : Port 1 Jame : MB_IED_1			
Туре	Number	Command			
Analog Inputs	12				
Binary Inputs	16				
Counters	32				
Analog Outputs	12	Command			
Digital Outputs	8	Command			
		Back			

The Analog Outputs Command will give you a screen similar to Figure 2-33. You may enter a value within the "Range" to drive the AO, then click the Execute button for a result similar to Point 0 of Figure 2-33.

Figure 3-30	Modbus Master	Analog Outputs	Command
-------------	---------------	----------------	---------

	Modbus(M) Analog Outputs Command					
Port # : 1 IED # : 1	-			t Name : Port 1 ame : MB_IED_1		
	Page 1 of 1	Go To G	-			
Point	Name	Range	Value	Operation		
O	IED_AO_ 0	-100.000 to 100.000	100.000	Execute		
1	IED_AO_ 1	-100.000 to 100.000	-100.000	Execute		
2	IED_AO_ 2	-100.000 to 100.000	-100.000	Execute		
З	IED_AO_ 3	-100.000 to 100.000	-100.000	Execute		
4	IED_AO_ 4	-100.000 to 100.000	-100.000	Execute		
5	IED_AO_ 5	-100.000 to 100.000	-100.000	Execute		
6	IED_AO_ 6	-100.000 to 100.000	-100.000	Execute		
7	IED_AO_ 7	-100.000 to 100.000	-100.000	Execute		
8	IED_AO_ 8	-100.000 to 100.000	-100.000	Execute		
9	IED_AO_ 9	-100.000 to 100.000	-100.000	Execute		
10	IED_AO_ 10	-100.000 to 100.000	-100.000	Execute		
11	IED_AO_ 11	-100.000 to 100.000	-100.000	Execute		
				Back		

The Digital Outputs Command will give you a screen similar to Figure 2-34. You may Open or Close, then click the Execute button for a result similar to Point 0 of Figure 2-34. The Momentary Time reflects the momentary time in ms set up in Configuration.

Modbus(M) Digital Outputs Command						
Port # : 2	!				ame : Port 2	
IED # : 1	Par	ge 1 of 2 GoTo	Go	Next >>	: MB_IED_1	
Point	Name					
Point	Name	Momentary Time(ms)	PU	int Operation	5	
0	IED_DO_0	450	Open	O Close	Execute	
1	IED_DO_1	600	O Open	O Close	Execute	
2	IED_DO_ 2	450	O Open	O Close	Execute	
3	IED_DO_ 3	450	O Open	O Close	Execute	
4	IED_DO_ 4	450	O Open	O Close	Execute	
5	IED_DO_ 5	450	O Open	O Close	Execute	
6	IED_DO_ 6	450	O Open	O Close	Execute	
7	IED_DO_7	450	O Open	O Close	Execute	
8	IED_DO_ 8	450	O Open	O Close	Execute	
9	IED_DO_ 9	450	O Open	O Close	Execute	
10	IED_DO_ 10	450	O Open	O Close	Execute	
11	IED_D0_ 11	450	O Open	O Close	Execute	
12	IED_D0_ 12	450	O Open	O Close	Execute	
13	IED_D0_ 13	450	O Open	O Close	Execute	
14	IED_DO_ 14	450	O Open	O Close	Execute	
15	IED_D0_ 15	450	O Open	O Close	Execute	
Open or	Open on IED_DO_ 0 : Successful Back					

4 2179

The 2179 protocol is a protocol that communicates between the RTU and an IED. This protocol is provided as a standard on many reclosers and regulators.

The RTU can be configured to periodically poll one or more IEDs using 2179 protocol for transducer-like inputs. In addition, the RTU will accept commands from the master station for transmission to a Recloser unit. The subsequent reply is returned to the master station.

Multiple IEDs can be physically connected to the RTU via a single RS-232 communication port when the units are party-lined through another media (modem, fiber optics, etc.) connected to the port. Each IED is assigned a unique address.

The communication protocol used between the RTU and the IEDs is described in the document from Cooper Power Systems entitled "Serial Communications Protocol, Data 2179-Revision 2", dated April 1997, reference number R280-90-12. This document describes the generic protocol used to communicate with the Cooper Power Systems CL-4C Regulator Control and the LTC-4C Power Transformer Control units. The point database for the Form 4C Recloser Control is described in the document from Cooper Power Systems titled "Communications Point Data Base, Data 2180 - Revision 3", dated April 1997, reference number R280-90-11. An additional document, DATA 2180A, contains information about status sequence numbers used in 2-bit data processing.

4.1 **Polled Data**

The remote periodically polls one or more IEDs for analog, status and pulse accumulator data. The poll rate is configurable at the RTU.

4.2 Database Mapping Theory

The RTU database mapping varies depending on the model of the connected device. Refer to the vendor documentation supplied with the unit for the sequence number assignments.

4.2.1 Pulse Accumulator Data

The user may configure from 0 to 32 values to be processed into the RTU accumulator database.

4.2.2 2 Bit Status Change Option

Newer Form 4C Reclosers have firmware that allows the Form 4C to detect changes and set change bits to report to the RTU. The RTU IED database may then be configured to cause the RTU to scan the IED status points to acquire the change bits from the IED. The following parameters apply to the 2 bit status change data acquisition:

- 1. Change bits are ignored on initial scans of the IED by the RTU and after lost communications has been restored with the IED.
- 2. Table 4-1 defines the action taken by the RTU firmware when the combinations of state/change bits are received from the IED:

RTU Current State	2179 Current State	2179 Change Bit	RTU Events Queued
1	1	0	none
0	0	0	none
1	0	0	change to 0
0	1	0	change to 1
1	1	1	change to 0, change to 1
0	0	1	change to 1, change to 0
1	0	1	change to 0, change to 1, change to 0
0	1	1	change to 1, change to 0, change to 1

Table 4-1 2179 Two Bit Status

4.2.3 Simple Status Data

The user may configure from 0 to 256 points. Values that have been configured are stored in the status database so that they may be mapped. Refer to the vendor documents for sequence number assignments.

Status Data in Cooper Form 4C devices containing software version 5.05 and above and display version 6.05 and above contain firmware which enables 2-Bit Status with Change function codes. If the Form 4C supports this function code, use "Two Bit Status Configuration" editor to enable the status points from the Form 4C device to store into the RTU status database. If the Form 4C does not support the function code or the change detection feature is not desired, use "Simple Status Configuration" to configure the status points.

If status points are defined on both "Two Bit Status Configuration" and "Simple Status Configuration", data scans will be made only for status with change detection and the simple status data will be derived from the status with change detection data.

4.2.4 Analog Data

The user may configure from 0 to 128 points to store in the RTU analog database. Configured values are stored in the analog database so that they may be mapped. Refer to the vendor documents for sequence number assignments.

4.2.5 Control Outputs

Control operations supported by the Form 4C Recloser are implemented as pseudo SBO control points within the RTU. The user may configure from 0 to 256 control points associated with the RTU SBO control point database.

For Cooper Form 4C Reclosers, control sequence numbers 00,01 and 02 provide Close operation only. The Trip for these sequence numbers acts as a no-op and performs no useful function. Refer to the vendor documents for sequence number assignments.

4.3 **Communication Port Configuration**

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click 2179 from the Protocol drop-down menu as shown.

				Communication	Port Configura	ati	ion		
Port Number	RTS	DTR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations	Copy to Port
Port #1	К 🛩	К 🛩		RTU to IED	2.770	*	Port 01	Configure	Сору
Port #2	К 💌	К 🛩	IRQ6	Port 2	None - RTU-IED -	^	Port 02	· .	Сору
Port #3	К 🛩	К 🛩	IKQ0	Port 3	2179 Arbiter		Port 03	-	Сору
Port #4	К 💌	К 🛩		<u>Port 4</u>	C2020(M)		Port 04	-	Сору
Port #5	К 💌	К 🛩		Port 5	C2100H(M) DNPM		Port 05	-	Сору
Port #6	К 🕶	К 🛩	IRQ6 🔽	Port 6	Electran ETI		Port 06	-	Сору
Port #7	К 💌	К 🛩	IRQ0 ¥	<u>Port 7</u>	Harris (M)	=	Port 07	-	Сору
Port #8	К 💌	К 🛩		Port 8	Incom JEM2 ASCII		Port 08	-	Сору
Port #9	К 🕶	К 🛩		<u>Port 9</u>	Modbus(M) Quantum		Port 09	· .	Сору
Port #10	К 💌	К 🛩	IRQ6 🔽	<u>Port 10</u>	SEL		Port 10	-	Сору
Port #11	К 💌	К 🛩	IRQ0	<u>Port 11</u>	Series V(M) Symax		Port 11	-	Сору
Port #12	К 💌	К 🛩		Port 12	Tickle Transdata		Port 12	-	Сору
Communi	cation A	Associ	ations Con	fig	Tunnel - MTU-RTU -				Back
					8979 C2100H CDC I CDC II DNPR FM Harris (R) IDLC L&N	~			

Figure 4-1 2179 Communication Port Configuration

4.3.1 Port Number

Physical Port number of the RTU.

4.3.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

4.3.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

4.3.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset.

While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

4.3.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

4.3.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name							
Name	Name Port 1						
	Cancel	Submit					

4.3.4 Protocol

From the drop-down list, select the protocol for this port.

4.3.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

4.3.6 **Point Operations**

Click this button to assign points.

4.3.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

4.3.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

4.4 **Configure Protocol**

Under the heading Configure Protocol, click Port n to configure the 2179 port. As a minimum, you must enter the "Number of IEDs" this port will be connected to. You may accept all other defaults or fill in the form according to the information following Figure 2-2.

	2179 Communication Channel Setup				
F	Por	t#:1	Port Na	me : RTU to IEC	D
		Number of IEDs	2		
		Baud Rate *	9600	×	
		Parity *	None	~	
		Data Bits *	8 🛩		
		Stop Bits *	1 🛩		
		CTS Delay *	0	(ms)	
		Rx Timeout *	2	(sec)	
		Interbyte Time *	100	(ms)	
		Modem Turn Off Time *	0	(ms)	
		Poll Time	2000	(ms)	
	_	Retries Before Failing Points	3	(times)	
Default: 0.		Echo of TX data received	ON	⊙ Yes	
Range: 0 to 32.			Cancel	Submit	

Figure 4-2 2179 Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

4.4.1 Number of IEDs (0 – 32)

Enter the number of IEDs connected to this port. The default setting is 0.

4.4.2 Baud Rate (300 – 19200)

From the drop-down menu, select the baud rate. The default setting is 9600.

4.4.3 Parity (None, Odd, Even)

From the drop-down menu, select the parity for the associated channel. The default setting is None.

4.4.4 Data Bits (5,6,7,8)

From the drop-down menu, select the data bits for the associated channel. The default setting is 8.

4.4.5 Stop Bits (0,1,2)

From the drop-down menu, select the stop bits for the associated channel. The default setting is 1.

4.4.6 CTS Delay (0 – 250ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 0.

Note: The RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the communications user interface.

4.4.7 Rx Timeout (0 – 30sec)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 2 sec.

4.4.8 Inter-byte time (0 – 250ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 100 msec.

4.4.9 Modem Turn Off Time (0 – 250ms)

Enter the delay time that the modem will maintain the carrier after the last data byte has been transmitted. Default setting is 0.

4.4.10 Poll Time (0 – 10,000ms)

Enter the time to delay between a sequence of polling all the devices connected to this communications port with the 2179 protocol. The default is 2000 msec.

4.4.11 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications with a 2179 device before marking all points attached to the device as failed. The default is 3.

4.4.12 Echo of TX data received (No, Yes)

Set this button to Yes if the protocol driver is to be used in "ECHO" mode (i.e., one or more IEDs in a fiber optic loop [the RTU receives the message it transmits]). Set this button to No if the protocol driver is to be used in the "NON ECHO" mode of operation (i.e., point-to-point fiber optic, radio or direct RS-232 connection).

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

4.5 **Point Operations**

From the Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Figure 4-3 IED Configuration

2179 IED Configuration

Port # : 1 Port Name : RTU to IE							: RTU to IED
IED #	IED Name	IED Address	On Scan	Device Type	Message Timers(ms)	Slave Config	Copy to IEDn
1	2179_IED_1	1	Y	Standard	TBM-150,SOT-500,AOT-3500	Edit	Сору
2	2179_IED_2	2	Y	Standard	TBM-150,SOT-500,AOT-3500	Edit	Сору
							Back

4.5.1 IED

The number of the IED on this communication channel.

4.5.2 IED Name

Click on the IED Name. A pop-up window will appear. See section 4.5.8.1 below.

4.5.3 IED Address

Reflects the entry in the pop-up menu. See section 4.5.8.1 below.

4.5.4 On Scan

Reflects the entry in the pop-up menu. See section 4.5.8.1 below

4.5.5 Device Type

Reflects the entry in the pop-up menu. See section 4.5.8.1 below.

4.5.6 Message Timers(ms)

Reflects the entries in the pop-up menu. See section 4.5.8.1 below.

4.5.7 Slave Config

Click on Edit to edit the IED points. See section "4.5.16.1 Slave Configuration Edit".

4.5.8 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

4.5.8.1 IED Name & Address Configuration

When you click the name of the IED (in blue characters), a pop-up menu will appear, as shown in Figure 2-6. Edit this pop-up window according to the directions below. After editing, your choices are reflected as explained under Figure 2-5.

Figure 4-4 IED Configuration	Figure 4-4	IED Configuration
------------------------------	------------	-------------------

				2179 II	ED Configurat	ion			
Port # :	1		,					Port Name	: RTU to IED
IED #	IED	Name	IED Address	On Sca	n Device Type	Mes	sage Timers(ms)	Slave Config	Copy to IEDn
1	2179	_IED_1	1	Y	Standard	TBM-15	0,SOT-500,AOT-3500	Edit	Сору
2	2179	_IED_2	2	Y	Standard	TBM-15	0,SOT-500,AOT-3500	Edit	Сору
		IED #1 Configu	ration			Х			Back
		IED Name		21	.79_IED_1				
	IED Address			1					
		On Scan *		۲	⊙Yes ○No				
		Device Type		St	Standard 👻				
		Message Timers							
		Time Between I	Message	s 15	i0 (ms).[TBI	/]			
		Select to Opera	te Time	50	0 (ms).[SO	T]			
		After Operate Ti	me	35	00 (ms).[AO	rj Set			

4.5.9 IED Name

Accept the default name or type a name of your choosing.

4.5.10 IED Address

Enter the IED address. The default is 1.

4.5.11 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled.

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

4.5.12 Device Type

Enter the scan type from the drop-down menu. The ENERGYLINE devices use a different opcode to send the analog data from the IED to the RTU. The default is Standard.

4.5.13 Time Between Messages (0 – 12750ms)

Enter the time to wait between the receipt of a valid message from a data request until the next data request is made. The default time of 150ms is correct for a Cooper Form 4C.

4.5.14 Select to Operate Time (0 – 12750ms)

Enter the time to wait between the receipt of a valid message from a select message until the operate message is sent. The default time of 500ms is correct for a Cooper Form 4C.

Document Version 6.5

4.5.15 After Operate Time (0 – 12750ms)

Enter the time to wait after the receipt of a valid message from a operate message. The default time of 3500ms is correct for a Cooper Form 4C.

Not all operate messages require this long a timeout. The user may wish to shorten the timeouts if multiple 2179 devices are in the loop or if a few communications errors on a single device are acceptable.

4.5.16 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

4.5.16.1 Slave Configuration Edit

4.5.17 Slave Config

Click on Edit to continue. A screen similar to Figure 2-10 will appear.

2179 IED Configuration					
Port # : 1 IED # : 1	Port Name : RTU to IED IED Name : 2179_IED_1				
Туре	Configure				
Pulse Accumulators	Edit				
Two Bit Status	Edit				
Simple Status	Edit				
Analog Inputs	Edit				
Control Outputs	Edit				
	Back				

Figure 4-5 IED Configuration

4.5.18 Type

The type of point.

4.5.19 Edit

Click on Edit to edit points. The editing of each point type will be covered in the following sections.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

4.5.20 IED Pulse Accumulators Configuration

From the 2179 IED Configuration screen, click on Edit for Pulse Accumulators. A screen similar to Figure 2-13 will appear.

2179 Accumulators Configuration						
Port # : 1 IED # : 1		ort Name : Port 1 me : 2179_IED_1				
160 # . 1	Page 1 of 2 GoTo	Go Next >>				
SEQ# (Hex)	Name	Add Points to Database				
40	IED_ACC_40	• Yes C No				
41	IED_ACC_41	• Yes • No				
42	IED_ACC_42	C Yes 🖲 No				
43	IED_ACC_43	C Yes ⊙ No				
44	IED_ACC_44	• Yes C No				
45	IED_ACC_45	C Yes 💿 No				
46	IED_ACC_46	C Yes 💿 No				
47	IED_ACC_47	• Yes C No				
48	IED_ACC_48	C Yes 💿 No				
49	IED_ACC_49	C Yes ⊙ No				
4A	IED_ACC_4A	⊙Yes ⊂No				
4B	IED_ACC_4B	C Yes 🔍 No				
4C	IED_ACC_4C	O Yes 💿 No				
4D	IED_ACC_4D	O Yes 💿 No				
4E	IED_ACC_4E	C Yes 💿 No				
4F	IED_ACC_4F	O Yes 💿 No				
	Can	cel Submit				

Figure 4-6 2179 Accumulators Configuration

4.5.21 SEQ# (Hex)

The sequence number in hex code. This number cannot be changed.

4.5.22 Name

If the Add Points to Database button is Yes, you may assign a name to the point or accept the default name.

4.5.23 Add Points to Database

Click the Yes button to add this point to the database. The default is No.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in

the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

4.5.24 IED Two Bit Status Configuration

From the 2179 IED Configuration screen, click on Two Bit Status. A screen similar to the one below will appear.

Figure A_{-7}	2179 Two	Rit Status	Configuration
rigule 4-7	21/9 I WU	Dit Status	Comiguiation

21	2179 Two Bit Status Configuration					
Port # : 1 IED # : 1		ort Name : Port 1 me : 2179_IED_1				
10 # . 1	Page 1 of 16 GoTo	Go Next >>				
SEQ# (Hex)	Name	Add Points to Database				
00-0	IED_MCD_00-0	O Yes 💿 No				
00-1	IED_MCD_00-1	O Yes 💿 No				
00-2	IED_MCD_00-2	• Yes • No				
00-3	IED_MCD_00-3	• Yes C No				
00-4	IED_MCD_00-4	• Yes C No				
00-5	IED_MCD_00-5	C Yes 💿 No				
00-6	IED_MCD_00-6	C Yes 💿 No				
00-7	IED_MCD_00-7	C Yes ⊙ No				
01-0	IED_MCD_01-0	⊂Yes ⊙No				
01-1	IED_MCD_01-1	• Yes C No				
01-2	IED_MCD_01-2	• Yes C No				
01-3	IED_MCD_01-3	⊂ Yes ⊙ No				
01-4	IED_MCD_01-4	C Yes 💿 No				
01-5	IED_MCD_01-5	C Yes 💿 No				
01-6	IED_MCD_01-6	© Yes ⊙ No				
01-7	IED_MCD_01-7	C Yes 💿 No				
	Can	icel Submit				

4.5.25 SEQ# (Hex)

The sequence number in hex code. This number cannot be changed. The first number is the sequence number. The second number is the bit number.

4.5.26 Name

If the Add Points to Database button is Yes, you may assign a name to the point or accept the default name.

4.5.27 Add Points to Database

Click the Yes button to add this point to the database. The default is No.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

4.5.28 IED Simple Status Configuration

From the 2179 IED Configuration screen, click on Simple Status. A screen similar to the one below will appear.

2	2179 Simple Status Configuration						
Port # : 1		ort Name : Port 1					
IED # :1	Page 1 of 17 GoTo	me : 2179_IED_1 Go Next >>					
SEO#		Add Points to					
(Hex)	Name	Database					
-1	COMM_STS						
30-0	IED_STS_30-0	⊙ Yes ⊂ No					
30-1	IED_STS_30-1	C Yes 💿 No					
30-2	IED_STS_30-2	⊙ Yes ⊂ No					
30-3	IED_STS_30-3	C Yes 💿 No					
30-4	IED_STS_30-4	⊙ Yes ⊂ No					
30-5	IED_STS_30-5	C Yes 🖲 No					
30-6	IED_STS_30-6	⊙ Yes ⊂ No					
30-7	IED_STS_30-7	C Yes 🔍 No					
30-8	IED_STS_30-8						
30-9	IED_STS_30-9	C Yes 🔍 No					
30-10	IED_STS_30-10	• Yes C No					
30-11	IED_STS_30-11	C Yes 🔍 No					
30-12	IED_STS_30-12						
30-13	IED_STS_30-13	C Yes 🔍 No					
30-14	IED_STS_30-14	• Yes C No					
	Car	ncel Submit					

Figure 4-8 2179 Simple Status Configuration

4.5.29 SEQ# (Hex)

The sequence number in hex code. This number cannot be changed. The first number is the sequence number. The second number is the bit number.

4.5.30 Name

If the Add Points to Database button is Yes, you may assign a name to the point or accept the default name.

4.5.31 Add Points to Database

Click the Yes button to add this point to the database. The default is No.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

4.5.32 IED Analog Configuration

From the 2179 IED Configuration screen, click on Edit for Analogs. A screen similar to Figure 4-9 will appear.

2179 Analog Inputs Configuration						
Port # :) IED # :	-					ort Name : Port 6 me : 2179_IED_1
		Page 1 of 8	GoT	D GO		Next >>
SEQ# (Hex)	Name	C Min	C Max	EGU Min	EGU Max	Add Points to Database
80	IED_AI_80	-32768	32767	-5	5	• Yes • No
81	IED_AI_81	-32768	32767	J.	5	• Yes C No
82	IED_AI_82	-32768	32767 Clie	ck on Header to	•)	• Yes C No
83	IED_AI_83	-32768	32767 Cha	ange All		• Yes C No
84	IED_AI_84	-32768	32767 Cha	inge All	X	• Yes C No
85	IED_AI_85	-32768	32767 Valu	ue	Set	O Yes 💿 No
86	IED_AI_86	-32768	32767	/or change		O Yes 💿 No
87	IED_AI_87	-32768	32767			• Yes • No
88	IED_AI_88	-32768	32767	-5	5	⊙Yes ⊂No
89	IED_AI_89	-32768	32767	-5	5	⊙Yes ⊙No
8A	IED_AI_8A	-32768	32767	-5	5	• Yes • No
8B	IED_AI_88	-32768	32767	-5	5	• Yes C No
8C	IED_AI_8C	-32768	32767	-5	5	• Yes C No
8D	IED_AI_8D	-32768	32767	-5	5	• Yes • No
8E	IED_AI_8E	-32768	32767	-5	5	• Yes • No
8F	IED_AI_8F	-32768	32767	-5	5	• Yes • No
					Car	ncel Submit

Figure 4-9	2179 Analog Input Configuration
	Analog Inpute Configuration

4.5.33 Point

The protocol sequence number in hex.

120

4.5.34 Name

Enter the name of the point (or accept the default name).

4.5.35 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

4.5.36 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

4.5.37 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

4.5.38 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

4.5.39 Add Points to Database

Click Yes to add the point to the database. If the point is not added, the point will be grayed out.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

4.5.40 IED Control Output Configuration

From the 2179 IED Configuration screen, click on Control Output. A screen similar to the one below will appear.

21	79 Control Output Conf	iguration
Port # : 1 IED # : 1	-	ort Name : Port 1 me : 2179 IED 1
10 # . 1	Page 1 of 16 GoTo	G0 Next >>
SEQ# (Hex)	Name	Add Points to Database
00	Control-00	⊂ Yes ⊙ No
01	Control-01	⊙ Yes ⊂ No
02	Control-02	⊙ Yes ⊂ No
03	Control-03	⊙ Yes ⊂ No
04	Control-04	⊙ Yes ⊂ No
05	Control-05	C Yes 🖲 No
06	Control-06	C Yes 🖲 No
07	Control-07	C Yes 🖲 No
08	Control-08	C Yes 🖲 No
09	Control-09	C Yes 🖲 No
0A	Control-0A	C Yes 🖲 No
OB	Control-0B	C Yes 💿 No
OC	Control-OC	O Yes 💿 No
OD	Control-OD	C Yes 💿 No
OE	Control-OE	C Yes 💿 No
OF	Control-OF	C Yes 💿 No
	Car	ncel Submit

Figure 4-10 2179 Control Output Configuration

4.5.41 SEQ# (Hex)

The sequence number in hex code. This number cannot be changed.

4.5.42 Name

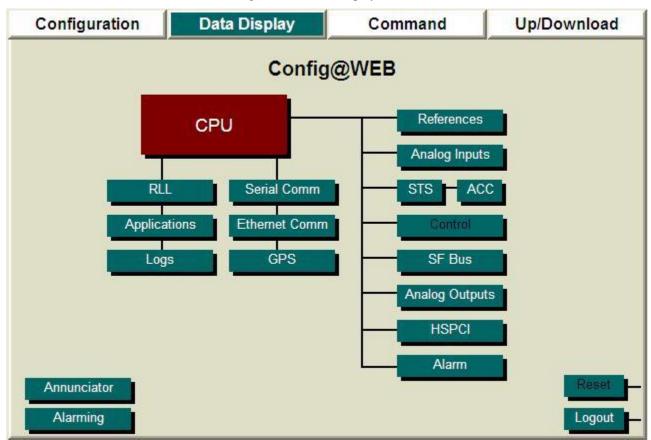
If the Add Points to Database button is Yes, you may assign a name to the point or accept the default name.

4.5.43 Add Points to Database

Click the Yes button to add this point to the database. The default is No.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in


the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

4.6 **Data Display**

Click the Data Display tab as shown in Figure 2-18.

Figure 4-11 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 4-12 Display Communication Port Data	Figure 4-12	Display Co	ommunication	Port Data
---	-------------	------------	--------------	-----------

Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	K	K	RTU to IED	2179	View	Port Data
Port #2	К	ĸ	Port 2	None	View	Port Data
Port #3	К	ĸ	Port 3	None	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port #5	К	К	Port 5	None	View	Port Data
Port #6	К	К	Port 6	None	View	Port Data
Port #7	К	К	Port 7	None	View	Port Data
Port #8	К	К	Port 8	None	View	Port Data
Port #9	К	К	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port#11	К	К	Port 11	None	View	Port Data
Port #12	К	К	Port 12	None	View	Port Data

4.6.1 Port Number

Physical Port number of the RTU.

4.6.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

4.6.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

4.6.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

4.6.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

4.6.3 Name

The port name given during configuration or default name accepted.

4.6.4 Protocol

The configured protocol for this port.

4.6.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

4.6.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

4.6.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

4.6.8 **Communication Counters**

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 4-13 2179 Communication Counters Display

	2179 Communication Counters	Display
Port # : 2		Port Name : Port 2
Point	Counter Name	Counts
1	Attempts	0
2	Good Replies	0
3	No Replies	0
4	RX Timeouts	0
5	CRC Errors	0
6	Framing Errors	0
7	Overruns	0
8	Parity Errors	0
Data Trap	Configure	
IED Comr	n Counters View	
Reset Co	mm Counters Reset	
		Back

Point Number 4.6.9

A logical point number for reference only.

4.6.10 Counter Name

The following counters are monitored:

4.6.10.1 Attempts

This indicates the cumulative number of transmitted messages since the last reset or power-up.

4.6.10.2 Good Replies

This indicates the cumulative number of transmitted messages that received a response since the last reset or power-up. This count can be affected by the Rx timeout delay value selected.

4.6.10.3 No Replies

This indicates the cumulative number of transmitted messages that did not receive a response since the last reset or power-up. This count can be affected by the Rx timeout delay value selected.

4.6.10.4 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

4.6.10.5 CRC Errors

This indicates the cumulative number of received messages with CRC errors since the last reset or power-up. This can be affected by parity and MTO.

4.6.10.6 Framing Errors

This indicates the cumulative number of framing errors since the last reset or power-up. This can be affected by parity.

4.6.10.7 Overruns

This indicates the cumulative number of over-run errors since the last reset or power-up.

4.6.10.8 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

4.6.11 Counts

The counts for each type of Counter.

4.6.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

4.6.13 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

2179 IED Comm Counters Display

Port # : 2								Port Nam	ie : Port 2
IED #	IED Name	Messages Sent	Valid Replies	No Replys	Timeouts	Security Errors		Overrun Errors	
1	2179_IED_1	0	0	0	0	0	0	0	0
2	2179_IED_2	0	0	0	0	0	0	0	0
									Done

4.6.13.1 IED

The number of the IED

4.6.13.2 IED Name

The name of the IED

4.6.13.3 Messages Sent

Messages sent to this IED since the last reset or since the last time the counters were cleared.

4.6.13.4 Valid Replies

Valid messages received from this IED since the last reset or since the last time the counters were cleared.

4.6.13.5 No Replies

The number of no replies from this IED since the last reset or since the last time the counters were cleared.

4.6.13.6 Timeouts

The number of timeouts from this IED since the last reset or since the last time the counters were cleared.

4.6.13.7 Security Errors

The number of security errors from this IED since the last reset or since the last time the counters were cleared.

4.6.13.8 Framing Errors

The number of framing errors from this IED since the last reset or since the last time the counters were cleared.

4.6.13.9 Overrun Errors

The number of overrun errors from this IED since the last reset or since the last time the counters were cleared.

4.6.13.10 Parity Errors

The number of parity errors from this IED since the last reset or since the last time the counters were cleared.

4.6.14 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

4.6.15 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

	2179 IED Display								
Port # : 1 Port Name : RTU to									
IED #	IED Name	IED Address	On Scan	Device Type	Message Timers(ms)	Slave Data			
1	2179_IED_1	1	Y	Standard	TBM-150, SOT-500, AOT-3500	View			
2	2179_IED_2	2	Y	Standard	TBM-150, SOT-500, AOT-3500	View			
						Back			

Figure 4-14 2179 IED Display

4.6.16 IED

The number of the IED on this communication channel.

4.6.17 IED Name

The name that was chosen, or accepted as default, during configuration.

4.6.18 IED Address

The IED Address chosen during configuration.

4.6.19 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

4.6.20 Device Type

The device type that was chosen during configuration. The possible types are Standard and Energyline.

4.6.21 Message Timers (ms)

The Message Timers in milliseconds. TBM is Time Between Message, SOT is Select to Operate Time, and AOT is After Operate Time.

4.6.22 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the 2179 IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

2179 IL	u uspiay
Port # : 1 IED # : 1	Port Name : Port 1 IED Name : 2179_IED_1
Туре	View Data
Pulse Accumulators	View
Two Bit Status	View
Simple Status	View
Analog Inputs	View
Control Outputs	
	Back

Figure 4-15 2179 IED Display

4.6.23 Type

The type of point.

4.6.24 View Data

Click the View button to view points.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the previous screen.

4.6.24.1 Pulse Accumulators

From the 2179 IED Display screen, click View for Pulse Accumulators to get the screen shown in Figure 2-24.

Figure 4-16 2179 Accumulators Input Display

	2179 Accumulator Inputs Display		
Port # : 1 IED # : 1			rt Name : RTU to IED Name : 2179_IED_1
	Page1 of 1 Go To Go		
Point	Point Name	Point Status	Count
40	IED_ACC_40	F	0
41	IED_ACC_41	F	0
42	IED_ACC_42	F	0
43	IED_ACC_43	F	0
44	IED_ACC_44	F	0
45	IED_ACC_45	F	0
46	IED_ACC_46	F	0
47	IED_ACC_47	F	0
48	IED_ACC_48	F	0
49	IED_ACC_49	F	0
4A	IED_ACC_4A	F	0
4B	IED_ACC_4B	F	0
4C	IED_ACC_4C	F	0
4D	IED_ACC_4D	F	0
4E	IED_ACC_4E	F	0
4F	IED_ACC_4F	F	0
			Back

4.6.25 Point

Protocol sequence number.

4.6.26 Point Name

The name of the point assigned during configuration.

4.6.27 Point Status

Please see the Config@WEB Secure Software Users Guide.

4.6.28 Count

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

4.6.28.1 Two Bit Status

From the 2179 IED Display screen, click View for Two Bit Status to get the screen shown in Figure 2-25.

Figure 4-17 2179 Two Bit Status Inputs Display

	2179 Two Bit Status	Inputs Displa	Y .	
Port # : 1 IED # : 1			Port Name : Por	
IED # : I	Page1 of 1 Go		Name : 2179_IEE)_1
Point	Point Name	Point Status	Point State	•
0-0	IED_MCD_00-0	F	OPEN	•
0-1	IED_MCD_00-1	F	OPEN	•
0-2	IED_MCD_00-2	F	OPEN	•
0-3	IED_MCD_00-3	F	OPEN	•
0-4	IED_MCD_00-4	F	OPEN	•
0-5	IED_MCD_00-5	F	OPEN	•
0-6	IED_MCD_00-6	F	OPEN	•
0-7	IED_MCD_00-7	F	OPEN	•
1-0	IED_MCD_01-0	F	OPEN	•
1-1	IED_MCD_01-1	F	OPEN	•
1-2	IED_MCD_01-2	F	OPEN	•
1-3	IED_MCD_01-3	F	OPEN	•
1-4	IED_MCD_01-4	F	OPEN	•
1-5	IED_MCD_01-5	F	OPEN	•
1-6	IED_MCD_01-6	F	OPEN	•
1-7	IED_MCD_01-7	F	OPEN	•
			Back	:

4.6.29 Point

Protocol sequence number and bit.

4.6.30 Point Name

The name of the point assigned during configuration.

4.6.31 Point Status

Please see the Config@WEB Secure Software Users Guide.

4.6.32 Point State

Indicates the current state of the point is either OPEN or CLOSED.

4.6.33 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to

return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

4.6.33.1 Simple Status

From the 2179 IED Display screen, click View for Simple Status to get the screen shown in Figure 4-18.

Figure 4-18	2179 Simple	Status	Inputs	Display
115010 1 10	21/ Simple	Diatab	inputs	Dispidy

	2179 Simple Status I	nputs Display	/
Port # : 1 IED # : 1			Port Name : Port 1 Name : 2179_IED_1
	Page1 of 1 Go		
Point	Point Name	Point Status	
-1	COMM_STS		CLOSED •
30-0	IED_STS_30-0	F	OPEN •
30-1	IED_STS_30-1	F	OPEN •
30-2	IED_STS_30-2	F	OPEN •
30-3	IED_STS_30-3	F	OPEN •
30-4	IED_STS_30-4	F	OPEN •
30-5	IED_STS_30-5	F	OPEN •
30-6	IED_STS_30-6	F	OPEN •
30-7	IED_STS_30-7	F	OPEN •
30-8	IED_STS_30-8	F	OPEN •
30-9	IED_STS_30-9	F	OPEN •
30-10	IED_STS_30-10	F	OPEN •
30-11	IED_STS_30-11	F	OPEN •
30-12	IED_STS_30-12	F	OPEN •
30-13	IED_STS_30-13	F	OPEN •
30-14	IED_STS_30-14	F	OPEN •
			Back

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not the comm. channel is operational. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

4.6.34 Point

Protocol sequence number and bit.

4.6.35 Point Name

The name of the point assigned during configuration.

4.6.36 Point Status

Please see the Config@WEB Secure Software Users Guide.

4.6.37 Point State

Indicates the current state of the point is either OPEN or CLOSED.

4.6.38 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

4.6.38.1 Analog Inputs

From the 2179 IED Display screen, click View for Analog Inputs to get the screen shown in Figure 4-19.

	2179 Analog Inputs Display						
Port # : 1 IED # : 1				ame : RTU to IED me : 2179_IED_1			
	Page1 of 1 Go	To Go					
Point	Point Name	Point Status	Point Value	Point Counts			
80	IED_AI_80	F	-5.000	-32768			
81	IED_AI_81	F	-5.000	-32768			
82	IED_AI_82	F	-5.000	-32768			
83	IED_AI_83	F	-5.000	-32768			
84	IED_AI_84	F	-5.000	-32768			
85	IED_AI_85	F	-5.000	-32768			
86	IED_AI_86	F	-5.000	-32768			
87	IED_AI_87	F	-5.000	-32768			
88	IED_AI_88	F	-5.000	-32768			
89	IED_AI_89	F	-5.000	-32768			
8A	IED_AI_8A	F	-5.000	-32768			
8B	IED_AI_8B	F	-5.000	-32768			
8C	IED_AI_8C	F	-5.000	-32768			
8D	IED_AI_8D	F	-5.000	-32768			
8E	IED_AI_8E	F	-5.000	-32768			
8F	IED_AI_8F	F	-5.000	-32768			
				Back			

4.6.39 Point

Protocol sequence number.

4.6.40 Point Name

The name of the point assigned during configuration.

4.6.41 Point Status

Please see the Config@WEB Secure Software Users Guide.

4.6.42 Point Value

The engineering unit (EGU) value.

4.6.43 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

4.6.43.1 Control Outputs

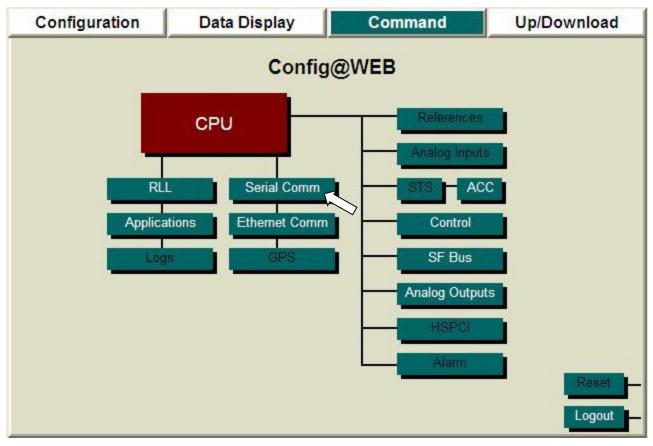
There is no display for Control Outputs.

4.7 Implementation Details

The following functions are supported by the driver:

4.7.1 Basic Scan

- Simple status data (Function code 0, command 1) The simple status data is returned as status points in the RTU database.
- 2. 2 bit Status change data(Function code 0, command 4) The 2 bit status change data is returned as status points in the RTU database.
- 3. 16-bit signed Analog data (Function code 0, command 8, if ENERGYLINE option, command 10) The analog data is stored in the RTU analog database as 16 bit signed analog data.
- 16-bit Pulse Accumulator data (Function code 0, command 40) The accumulator data is stored in the RTU accumulator database as a 16 bit quantity. The rollover value is 65535.


4.7.2 Supervisory Control

- 1. Select Open (Function code 10, command 10)
- 2. Select Close (Function code 10, command 11)
- 3. Operate (Function code 10, command 20)
- 4. Reset Select (Function code 10, command 21)

4.8 **Command Serial Comm**

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

Figure 4-20 Command Tab Page

Command Communication Port Data						
Port Number	RTS	DTR	Name Protocol Command Por Data		Command Port Data	Test Mode
Port #1	К	К	Port 1	2179	Port Data	Normal 💌
Port#2	К	К	Port 2	None	Port Data	Normal 🔽
Port#3	К	К	Port 3	None	Port Data	Normal 💌
Port#4	К	К	Port 4	None	Port Data	Normal 💌
Port#5	К	К	Port 5	None	Port Data	Normal 💌
Port#6	К	К	Port 6	None	Port Data	Normal 💌
Port#7	К	К	Port 7	None	Port Data	Normal 💌
Port#8	К	К	Port 8	None	Port Data	Normal 💌
Port#9	К	К	Port 9	None	Port Data	Normal 💌
Port#10	К	К	Port 10	None	Port Data	Normal 💌
Port #11	к	К	Port 11	None	Port Data	Normal 💌
Port#12	К	К	Port 12	None	Port Data	Normal 💌

The resultant screen will be similar to Figure 2-31. Click on the Command button as shown.

Figure 4-22 2179 IED Command

			-	
21	79 I	ED (Com	mand

Port # : 1 Port Name : RTU to IED								
IED #	IED Name	IED Address	On Scan	Device Type	Message Timers(ms)	Slave Data		
1	2179_IED_1	1	Y	Standard	TBM-150, SOT-500, AOT-3500	Command		
2	2179_IED_2	2	Y	Standard	TBM-150, SOT-500, AOT-3500	Command		
						Back		

Baseline Proprietary and Confidential to Schneider Electric The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command Control Outputs.

Figure 4-23 2179 IED Command

2179 IED Command						
Port # : 1 IED # : 1	Port Name : Port 1 IED Name : 2179_IED_1					
Туре	Command					
Pulse Accumulators						
Two Bit Status						
Simple Status						
Analog Inputs						
Control Outputs	Command					
	Back					

The Control Outputs Command will give you a screen similar to Figure 2-34. You may Trip or Close, then click the Execute button for a result similar to Point 0 of Figure 2-34.

Figure 4-24	2179	Control	Outputs	Command

2179 Control Outputs Command.							
Port # : 1 Port Name : Port 1 IED # : 1 IED Name : 2179_IED_1							
SEQ# (Hex)	Name	P	oint Operat	ions			
00	Control-00	 Trip 	C Close	Execute			
01	Control-01	O Trip	C Close	Execute			
02	Control-02	O Trip	C Close	Execute			
03	Control-03	O Trip	C Close	Execute			
04	Control-04	O Trip	C Close	Execute			
05	Control-05	O Trip	O Close	Execute			
Trip on (Trip on Control-00 : Successful Back						

4.9 **Cooper Form 4C Configuration**

The following codes must be verified or changed for successful communications between the RTU and the Cooper Form 4C. Information about these codes is contained in the publication R280-90-11 Communications Point Data Base Data 2180 from Cooper Power Systems.

4.9.1 Code 81

Code 81 must be set according to the baud rate selected for use by the RTU. Refer to the Cooper document for the correct setting to match the RTU configuration.

4.9.2 Code 82

Code 82 must be set to the correct address as specified by the RTU database record.

4.9.3 Code 83

Code 83 should be set to mode 2.

4.9.4 Code 84

Code 84 must be changed from 1 to 5 for 4800 baud operation. Telvent has not verified this setting for other baud rates.

4.9.5 Code 85

Code 85 should be set to 50ms.

To ensure that the values displayed are those that are actually being used after changing any parameters, both DC and AC should be removed and reapplied to the device to force a hardware reset by following the directions provided with the Form 4C.

The Cooper Form 4C may show nonzero Number of failures on the RTU communications display in the following conditions:

- 1. Any device is connected to the Data Port.
- 2. Any reclosing operation is in progress.
- 3. Any supervisory control has been sent through the Digital Communications Accessory for the device to execute.

In the above cases, when the Form 4C is performing any of these functions, it considers the requests through the Digital Communications Accessory to be of lower priority and ignores the requests issued on this port.

4.9.6 SBO Immediate Operate

An SBO Immediate Operate function was added to the driver. If the MTU protocol supports this mode of operation of SBO control, the function may now be passed to the 2179 driver for transmission to the 2179 protocol IED. The driver will translate the Immediate Operate to Select/Operate messages in the 2179 protocol.

Note: If no data points are configured to be acquired from the slave device in the 2179 database record, the slave device will not be scanned, even if the device is otherwise correctly configured for scanning in the database.

5 TransData

5.1 **Communication Port Configuration**

TransData is a protocol that communicates between the RTU and the TransData MARK V Meter. The communication protocol used between the RTU and the meters is described in the document from TransData, Inc., entitled "Mark V Digital Transducer Output Protocol", dated June 29, 1995.

Note: The IED interface must be configured in the PERCENT OF RANGE SCALING mode for proper operation.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Transdata from the Protocol drop-down menu as shown.

					i on conigui				
Port Number	RTS	DTR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations	Copy o Port
Port #1	К 💌	К 🛩		RTU to IED	Transdata	~	Port 01	Configure	Сору
Port #2	К 🛩	К 🛩	mor	Port 2	None — RTU-IED —	^	Port 02	· ·	Сору
Port #3	К 🕶	К 🛩	IRQ6	Port 3	2179		Port 03	-	Сору
Port #4	К 🕶	К 🛩		Port 4	Arbiter C2020(M)		Port 04	· ·	Сору
Port #5	К 🛩	К 🛩		Port 5	C2100H(M) DNPM		Port 05	· ·	Сору
Port #6	К 🛩	К 🛩		Port 6	Electran ETI		Port 06	· ·	Сору
Port #7	К 🛩	К 🛩	IRQ6 💌	Port 7	Harris (M)		Port 07	· ·	Сору
Port #8	К 🛩	К 🛩		Port 8	Incom JEM2 ASCII	=	Port 08	-	Сору
Port #9	К 🛩	К 🛩		Port 9	Modbus(M) Quantum		Port 09	· ·	Сору
Port #10	К 🛩	К 🛩	1200	<u>Port 10</u>	SEL		Port 10	· ·	Сору
Port #11	К 🛩	К 🛩	IRQ6 🔽	<u>Port 11</u>	Series V(M) Symax		Port 11	· ·	Сору
Port #12	К 🛩	К 🛩		<u>Port 12</u>	Tickle Transdata		Port 12	· ·	Сору
Communio	cation A	Associ	ations Con	fig	Tunnel - MTU-RTU - 8979	ĺ			Back
					C2100H CDC I CDC II DNPR FM Harris (R) IDLC	~			

Figure 5-1 Transdata Communication Port Configuration

Communication Port Configuration

5.1.1 Port Number

Physical Port number of the RTU.

5.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

5.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

5.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

5.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

5.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name								
Name Port 1								
	Cancel	Submit						

5.1.4 Protocol

From the drop-down list, select the protocol for this port.

5.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

5.1.6 Point Operations

Click this button to assign points.

5.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

5.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

5.2 **Configure Protocol**

Under the heading Configure Protocol, click Port *n* to configure the Transdata port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

	Transdata Communication Channel Setup				
	Port#:1	Port Name : RTU to IED			
	Number of IEDs	2			
	Baud Rate *	9600 💌			
	Parity *	None 💌			
	Data Bits *	8 🛩			
	Stop Bits(0 = Sync) *	1 💌			
	CTS Delay *	0 (ms)			
	Rx Timeout *	250 (ms)			
	Poll Time	2000 (ms)			
Default: 0.	Retries Before Failing Points	3 (times)			
Range: 0 to 32.	Cancel Subm				

Figure 5-2 Transdata Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

5.2.1 Number of IEDs (0 – 32)

Enter the number of TransData meters connected to this port. The default setting is 0.

5.2.2 Baud Rate (300 – 19200)

From the drop-down menu, select the baud rate. The default setting is 9600.

5.2.3 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is None.

5.2.4 Data Bits (5,6,7,8)

Enter the data bits for the associated channel. The default setting is 8.

5.2.5 Stop Bits (0,1,2)

Enter the stop bits for the associated channel. The default setting is 1.

5.2.6 CTS Delay (0 – 250ms)

Enter the clear-to-send delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 0.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

5.2.7 Rx Timeout (0 – 30,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 250.

5.2.8 Poll Time (0 – 10,000ms)

Enter the time to delay between a sequence of polling all the devices connected to this communications port. The default is 2000.

5.2.9 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications with a device before marking all points attached to the device as failed. The default is 3.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

5.3 **Point Operations**

From the Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Figure 5-3	IED Configuration
------------	-------------------

Transdata IED Configuration

Port #: 1 Port Name : RTU to IED								
IED #	IED Name	Address		ANA Size	ACC Size	On Scan	Slave	Сору
		Meter	Base	(Bit)	(Bit)	UII SCall	Config	to IEDn
1	TD_IED_1	1	0	16	24	Y	Edit	Сору
2	TD_IED_2	2	0	16	24	Y	Edit	Сору
								Back

5.3.1 IED

The logical number of the IED on this communication channel.

5.3.2 IED Name

Click on the IED Name. A pop-up window will appear. See section 5.3.9 below.

5.3.3 IED Address

Reflects the entries in the pop-up menu. See section 5.3.9 below.

5.3.4 ANA Size (Bit)

Reflects the entries in the pop-up menu. See section 5.3.9 below.

5.3.5 ACC Size (Bit)

Reflects the entries in the pop-up menu. See section 5.3.9 below.

5.3.6 On Scan

Reflects the entry in the pop-up menu. See section 5.3.9 below.

5.3.7 Slave Config

Click on Edit to edit the IED points. See section "5.3.17 Slave Configuration Edit".

5.3.8 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

5.3.9 IED Name & Address Configuration

When you click the name of the IED (in blue characters), a pop-up menu will appear, as shown in Figure 2-6. Edit this pop-up window according to the directions below. After editing, your choices are reflected as explained under Figure 2-5.

nanodata iEb configuration										
Port #: 1 Port Name : RTU to IED										
IED# IED		lame	Address		ANA Size	ACC Size	On Scan	Slave	Сору	
	IEDIN	laine	Meter	Base	(Bit)	(Bit)	On Scall	Config	to IEDn	
1		TD_IED_1		1	0	16	24	Y	Edit	Сору
2		TD_I	ED_2	2	0	16	24	Y	Edit	Сору
IED #1 Configuration X								Back		
	IED Name			TD_IED_	1					
Meter Address			s	1						
Base Address			0							
	Analog Size 16 Bit									
	Accumulator Size 24 VBit				it					
	On Scan * Or Yes O No Set					2				

Figure 5-4 IED Configuration

5.3.10 IED Name

Accept the default name or type a name of your choosing.

5.3.11 Meter Address

Enter the Meter address. The default is 1.

5.3.12 Base Address

Enter the address for the base unit. The default is 0.

5.3.13 ANA Size (Bit) (16, 12)

Select the Analog bit size. Default is 16.

5.3.14 ACC Size (Bit) (24, 20)

Select the Accumulator size. Default is 24.

5.3.15 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled.

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

5.3.16 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

5.3.17 Slave Configuration Edit

5.3.18 Slave Config

Click Edit to continue. A screen similar to Figure 2-10 will appear. The screen has certain values as default and some points are added to database as default. You may change these defaults according to the situation.

Figure 5-5 IED Configuration

Transdata Meter Configuration

Hansudta Fieter Sonnigaration									
Port # : 2 Port Name : Port 2 IED # : 1 IED Name : TD_IED_1									
Point Name	EGU Min	EGU Max	Add Points to Database						
COMM STATUS	N/A	N/A	L						
Volts									
Volts Total	O	150	C Yes No 						
Ph A Volts	0	150							
Ph C Volts	0	150							
Ph B Volts	0	150	• Yes • No						
Amps									
Amps Total	0	5	C Yes ⊙ No						
Ph A Amps	0	5							
Ph C Amps	0	5							
Ph B Amps	0	5	⊙ Yes O No						
	Wa	atts							
Watts Total	-1500	1500							
Ph A Watts	-1500	1500	C Yes ⊙ No						
Ph C Watts	-1500	1500	C Yes 💿 No						
Ph B Watts	-1500	1500	C Yes 💿 No						
VAR									
VARS Total	-1500	1500	• Yes C No						
			Cancel Submit						

5.3.19 Point Name

The name of the point. These names are hard-coded and match the values returned from the meter.

5.3.20 EGU Min/EGU Max

Enter the engineering units minimum and maximum for the point.

5.3.21 Add Points to Database

Click Yes to add the point to the database. Some points are defaulted to Yes. Points that are not set to Yes will not be mappable as I/O points in the RTU.

Port # : 2 Port Name : Port 2 IED # : 1 IED Name : TD_IED_1								
Point Name	EGU Min	EGU Max	Add Points to Database					
VAR								
VARS Total	-1500	1500	⊙ Yes O No					
Ph A VARS	-1500	1500	C Yes ⊙ No					
Ph C VARS	-1500	1500	C Yes 💿 No					
Ph B VARS	-1500	1500	C Yes 💿 No					
		Q						
Q Total	-1500	1500	C Yes € No					
Ph A Q	-1500	1500	C Yes € No					
Ph C Q	-1500	1500	C Yes ⊙ No					
Ph B Q	-1500	1500	C Yes 💿 No					
		VA						
VA Total	-1500	1500	Yes O No					
Ph A VA	-1500	1500	C Yes ⊙ No					
Ph C VA	-1500	1500	C Yes € No					
Ph B VA	-1500	1500	C Yes 💿 No					
	V**2							
V**2 Total	0	22500	O Yes € No					
DH A 1/**0	0	22500						
CancelSubmit								

Port # : 2 Port Name : Port : IED # : 1 IED Name : TD_IED_								
Point Name	EGU Min	EGU Max	Add Points to Database					
V**2								
V**2 Total	0	22500	C Yes 🖲 No					
Ph A V**2	0	22500	C Yes 💿 No					
Ph C V**2	0	22500	C Yes 💿 No					
Ph B V**2	0	22500	C Yes 💿 No					
	I*	**2						
I**2 Total	0	25	C Yes 💿 No					
Ph A I**2	0	25	C Yes 💿 No					
Ph C I**2	0	25	C Yes 💿 No					
Ph B I**2	0	25	C Yes 💿 No					
		PF						
PF Total	-1	1	C Yes 💿 No					
Ph A PF	-1	1	• Yes C No					
Ph C PF	-1	1						
Ph B PF	-1	1						
Neutral/Freq/Spare								
Amps Neutral	0	5						
Frequency	57	63	⊙Yes CNo 💌					
			Cancel Submit					

Port # : 2 Port Name : Port 2 Port 2 IED # : 1 IED Name : TD_IED_1						
Point Name	EGU Min	EGU Max	Add Points to Database			
	Neutral/F	req/Spare	_			
Amps Neutral	0	5				
Frequency	57	63				
Spare	0	5	C Yes 💿 No			
	CH	1-8				
Chan 1 Total Usage	N/A	N/A				
Chan 1 Demand	N/A	N/A	• Yes • No			
Chan 2 Total Usage	N/A	N/A	O Yes 💿 No			
Chan 2 Demand	N/A	N/A	C Yes 💿 No			
Chan 3 Total Usage	N/A	N/A	C Yes 💿 No			
Chan 3 Demand	N/A	N/A	C Yes 💿 No			
Chan 4 Total Usage	N/A	N/A	C Yes 💿 No			
Chan 4 Demand	N/A	N/A	C Yes 🖲 No			
Chan 5 Total Usage	N/A	N/A	C Yes 💿 No			
Chan 5 Demand	N/A	N/A	C Yes No			
Chan 6 Total Usage	N/A	N/A	C Yes No			
Chan 6 Demand	N/A	N/A	C Yes € No			
Chan 7 Total Usage	N/A	N/A	C Yes No			
Chan 7 Demand	N/A	N/A				
			Cancel Submit			

147

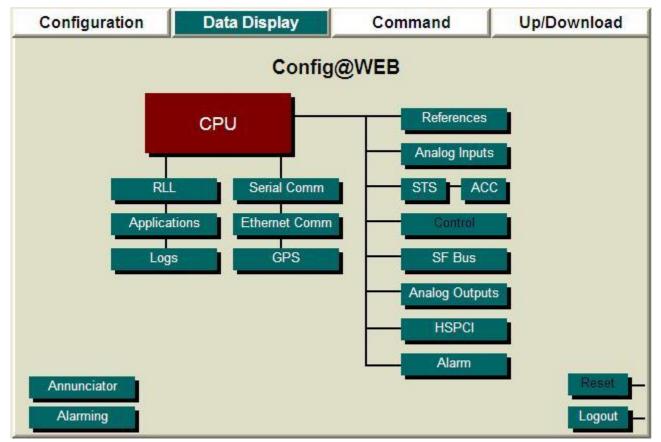
ED # : 1IED Name : TD_IEIPoint NameEGU MinEGU MaxAdd Points to DatabasChan 1 DemandN/AN/A° Yes ° NoChan 2 Total UsageN/AN/A° Yes ° NoChan 2 DemandN/AN/A° Yes ° NoChan 3 Total UsageN/AN/A° Yes ° NoChan 3 DemandN/AN/A° Yes ° NoChan 3 DemandN/AN/A° Yes ° NoChan 4 Total UsageN/AN/A° Yes ° NoChan 4 DemandN/AN/A° Yes ° NoChan 5 Total UsageN/AN/A° Yes ° NoChan 5 DemandN/AN/A° Yes ° NoChan 6 DemandN/AN/A° Yes ° NoChan 6 DemandN/AN/A° Yes ° NoChan 7 DemandN/AN/A° Yes ° NoChan 7 DemandN/AN/A° Yes ° NoChan 8 DemandN/AN/A° Yes ° NoDateN/AN/A° Yes ° No	Transdata Meter Corniguration							
Point NameEGU MinEGU MaxAdd Points to DatabasChan 1 DemandN/AN/AN/AC Yes C NoChan 2 Total UsageN/AN/AN/AC Yes C NoChan 2 DemandN/AN/AN/AC Yes C NoChan 3 Total UsageN/AN/AN/AC Yes C NoChan 3 DemandN/AN/AN/AC Yes C NoChan 3 DemandN/AN/AC Yes C NoChan 4 Total UsageN/AN/AC Yes C NoChan 4 DemandN/AN/AC Yes C NoChan 5 Total UsageN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 6 Total UsageN/AN/AC Yes C NoChan 7 DemandN/AN/AC Yes C NoChan 7 DemandN/AN/AC Yes C NoChan 7 DemandN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoDateN/AN/AC Yes C No	Port # : 2 Port Name : Port 2 IED # : 1 IED Name : TD IED 3							
Chan 1 DemandN/AN/AYesNoChan 2 Total UsageN/AN/AN/AC YesNoChan 2 DemandN/AN/AN/AC YesNoChan 3 Total UsageN/AN/AN/AC YesNoChan 3 DemandN/AN/AN/AC YesNoChan 4 Total UsageN/AN/AN/AC YesNoChan 4 DemandN/AN/AN/AC YesNoChan 5 Total UsageN/AN/AC YesNoChan 5 DemandN/AN/AC YesNoChan 5 DemandN/AN/AC YesNoChan 5 DemandN/AN/AC YesNoChan 6 Total UsageN/AN/AC YesNoChan 6 DemandN/AN/AC YesNoChan 7 DemandN/AN/AC YesNoChan 7 DemandN/AN/AC YesNoChan 8 Total UsageN/AN/AC YesNoChan 8 DemandN/AN/AC YesNoChan 8 DemandN/AN/AC YesNoChan 8 DemandN/AN/AC YesNoDateN/AN/AC YesNo		EGU Min	EGU Max	Add Points to Database				
Chan 2 DemandN/AN/AC Yes C NoChan 3 Total UsageN/AN/AC Yes C NoChan 3 DemandN/AN/AC Yes C NoChan 4 Total UsageN/AN/AC Yes C NoChan 4 DemandN/AN/AC Yes C NoChan 5 Total UsageN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 6 Total UsageN/AN/AC Yes C NoChan 6 DemandN/AN/AC Yes C NoChan 7 Total UsageN/AN/AC Yes C NoChan 7 Total UsageN/AN/AC Yes C NoChan 7 Total UsageN/AN/AC Yes C NoChan 8 Total UsageN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoDateN/AN/AC Yes C No	Chan 1 Demand			© Yes ⊂ No				
Chan 3 Total UsageN/AN/AC Yes C NoChan 3 DemandN/AN/AC Yes C NoChan 4 Total UsageN/AN/AC Yes C NoChan 4 DemandN/AN/AC Yes C NoChan 5 Total UsageN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 5 DemandN/AN/AC Yes C NoChan 6 Total UsageN/AN/AC Yes C NoChan 6 DemandN/AN/AC Yes C NoChan 7 Total UsageN/AN/AC Yes C NoChan 7 DemandN/AN/AC Yes C NoChan 8 Total UsageN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoChan 8 DemandN/AN/AC Yes C NoDateN/AN/AC Yes C No	Chan 2 Total Usage	N/A	N/A	C Yes ⊙ No				
Chan 3 DemandN/AN/AC Yes © NoChan 4 Total UsageN/AN/AC Yes © NoChan 4 DemandN/AN/AC Yes © NoChan 5 Total UsageN/AN/AC Yes © NoChan 5 DemandN/AN/AC Yes © NoChan 5 DemandN/AN/AC Yes © NoChan 6 Total UsageN/AN/AC Yes © NoChan 6 Total UsageN/AN/AC Yes © NoChan 6 DemandN/AN/AC Yes © NoChan 7 Total UsageN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 8 Total UsageN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoDateN/AN/AN/AC Yes © NoN/AC Yes © No	Chan 2 Demand	N/A	N/A	C Yes 💿 No				
Chan 4 Total UsageN/AN/AC Yes © NoChan 4 DemandN/AN/AC Yes © NoChan 5 Total UsageN/AN/AC Yes © NoChan 5 DemandN/AN/AC Yes © NoChan 6 Total UsageN/AN/AC Yes © NoChan 6 DemandN/AN/AC Yes © NoChan 6 DemandN/AN/AC Yes © NoChan 7 Total UsageN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 8 Total UsageN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoDateN/AN/AN/AC Yes © No	Chan 3 Total Usage	N/A	N/A	C Yes 💿 No				
Chan 4 DemandN/AN/AC Yes C Yes NoChan 5 Total UsageN/AN/AC Yes C Yes 	Chan 3 Demand	N/A	N/A	C Yes 💿 No				
Chan 5 Total UsageN/AN/AC Yes © NoChan 5 DemandN/AN/AC Yes © NoChan 6 Total UsageN/AN/AC Yes © NoChan 6 DemandN/AN/AC Yes © NoChan 6 DemandN/AN/AC Yes © NoChan 7 Total UsageN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 8 Total UsageN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoDateDateN/AN/AC Yes © No	Chan 4 Total Usage	N/A	N/A	C Yes 💿 No				
Chan 5 DemandN/AN/AC Yes © NoChan 6 Total UsageN/AN/AC Yes © NoChan 6 DemandN/AN/AC Yes © NoChan 7 Total UsageN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 8 Total UsageN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoDateDateN/AN/AC Yes © NoC	Chan 4 Demand	N/A	N/A	C Yes 💿 No				
Chan 6 Total UsageN/AN/AC Yes © NoChan 6 DemandN/AN/AC Yes © NoChan 7 Total UsageN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 8 Total UsageN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoDateDateN/AN/AC Yes © NoN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoDate	Chan 5 Total Usage	N/A	N/A	C Yes 💿 No				
Chan 6 DemandN/AN/AC Yes I NoChan 7 Total UsageN/AN/AC Yes I NoChan 7 DemandN/AN/AC Yes I NoChan 8 Total UsageN/AN/AC Yes I NoChan 8 DemandN/AN/AC Yes I NoChan 8 DemandN/AN/AC Yes I NoDateDateN/AN/AN/AN/AC Yes I NoO Yes I NoDateN/AN/AN/AC Yes I No	Chan 5 Demand	N/A	N/A	C Yes 💿 No				
Chan 7 Total UsageN/AN/AC Yes © NoChan 7 DemandN/AN/AC Yes © NoChan 8 Total UsageN/AN/AC Yes © NoChan 8 DemandN/AN/AC Yes © NoDateN/AN/ADate/Time	Chan 6 Total Usage	N/A	N/A	C Yes 💿 No				
Chan 7 Demand N/A N/A C Yes No Chan 8 Total Usage N/A N/A C Yes No Chan 8 Demand N/A N/A C Yes No Chan 8 Demand N/A N/A C Yes No Date N/A N/A C Yes No	Chan 6 Demand	N/A	N/A	C Yes 💿 No				
Chan 8 Total Usage N/A N/A C Yes © No Chan 8 Demand N/A N/A C Yes © No Date/Time Date N/A N/A C Yes © No	Chan 7 Total Usage	N/A	N/A	O Yes 💿 No				
Chan 8 Demand N/A N/A O Yes © No Date/Time Date N/A N/A O Yes © No	Chan 7 Demand	N/A	N/A	O Yes 💿 No				
Date Date N/A N/A C Yes • No	Chan 8 Total Usage	N/A	N/A	O Yes 💿 No				
Date N/A N/A Cires © No	Chan 8 Demand	N/A	N/A	O Yes 💿 No				
· · · · · · · · · · · · · · · · · · ·	Date/Time							
Time N/A N/A Cityes 🖲 No								
	Time	N/A	N/A	O Yes ⊙ No				

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Move the scroll bar on the right to access all the points. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

5.3.22 Analog Database

The configured analogs are stored in the RTU database in the following order:


F	Fields				
Volts	T, A, C, B	unsigned			
Amps	T, A, C, B	unsigned			
Watts	T, A, C, B	signed			
VAR	T, A, C, B	signed			
Q	T, A, C, B	signed			
VA	T, A, C, B	signed			
V2	T, A, C, B	unsigned			
I2	T, A, C, B	unsigned			
PF	T, A, C, B	signed			
INeutral		unsigned			
Frequency		signed			
Spare		unsigned			

The channel data is stored as 24 bit integer values and roll over from the maximum value of 16,777,215 to 0. Date and time values are the decimal equivalents of the raw data values from the meter.

5.4 **Data Display**

Click the Data Display tab as shown in Figure 2-18.

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 5-7	Display	Communication	Port Data
------------	---------	---------------	-----------

Display Communication Port Data							
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data	
Port #1	K	K	RTU to IED	Transdata	View	Port Data	
Port #2	K	K	Port 2	None	View	Port Data	
Port #3	K	ĸ	Port 3	None	View	Port Data	
Port #4	K	ĸ	Port 4	None	View	Port Data	
Port #5	K	ĸ	Port 5	None	View	Port Data	
Port #6	K	ĸ	Port 6	None	View	Port Data	
Port #7	K	ĸ	Port 7	None	View	Port Data	
Port #8	K	ĸ	Port 8	None	View	Port Data	
Port #9	K	ĸ	Port 9	None	View	Port Data	
Port #10	K	ĸ	Port 10	None	View	Port Data	
Port #11	К	К	Port 11	None	View	Port Data	
Port #12	ĸ	К	Port 12	None	View	Port Data	
Communicat	tion Ass	ociation	s Config			Back	

5.4.1 Port Number

Physical Port number of the RTU.

5.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

5.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

5.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

5.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

5.4.3 Name

The port name given during configuration or default name accepted.

5.4.4 Protocol

The configured protocol for this port.

5.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

5.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

5.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

5.4.8 **Communication Counters**

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 5-8 Transdata Communication Counters Display

Transdata Communication Counters Display							
Port # : 3		Port Name : Port 3					
Point	Counter Name	Counts					
1	Attempts	85					
2	Good Replies	0					
3	No Replies	85					
4	RX Timeouts	0					
5	CRC Errors	0					
6	Framing Errors	0					
7	Overruns	0					
8	Parity Errors	0					
Data Trap	Configure						
IED Comr	n Counters View						
Reset Cor	mm Counters Reset						
		Back					

5.4.9 **Point Number**

A logical point number for reference only.

5.4.10 **Counter Name**

The following counters are monitored:

5.4.10.1 Attempts

This indicates the cumulative number of transmitted messages since the last reset or power-up.

5.4.10.2 Good Replies

This indicates the cumulative number of transmitted messages that received a response since the last reset or power-up. This count can be affected by the Rx timeout delay value selected.

5.4.10.3 No Replies

This indicates the cumulative number of transmitted messages that did not receive a response since the last reset or power-up. This count can be affected by the Rx timeout delay value selected.

5.4.10.4 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

5.4.10.5 CRC Errors

This indicates the cumulative number of received messages with CRC errors since the last reset or power-up. This can be affected by parity and MTO.

5.4.10.6 Framing Errors

This indicates the cumulative number of framing errors since the last reset or power-up. This can be affected by parity.

5.4.10.7 Overruns

This indicates the cumulative number of over-run errors since the last reset or power-up.

5.4.10.8 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

5.4.11 Counts

The counts for each type of Counter.

5.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

5.4.13 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

Transdata IED Comm Counters Display

Port # : 2 Port Name : Po							e : Port 2		
IED #	IED Name	Messages Sent	Valid Replies	No Replys	Timeouts			Overrun Errors	
1	TD_IED_1	74	0	74	0	0	0	0	0
2	TD_IED_2	74	0	74	0	0	0	0	0
									Done

5.4.13.1 IED

The number of the IED

5.4.13.2 IED Name

The name of the IED

5.4.13.3 Messages Sent

Messages sent to this IED since the last reset or since the last time the counters were cleared.

5.4.13.4 Valid Replies

Valid messages received from this IED since the last reset or since the last time the counters were cleared.

5.4.13.5 No Replies

The number of no replies from this IED since the last reset or since the last time the counters were cleared.

5.4.13.6 Timeouts

The number of timeouts from this IED since the last reset or since the last time the counters were cleared.

5.4.13.7 Security Errors

The number of security errors from this IED since the last reset or since the last time the counters were cleared.

5.4.13.8 Framing Errors

The number of framing errors from this IED since the last reset or since the last time the counters were cleared.

5.4.13.9 Overrun Errors

The number of overrun errors from this IED since the last reset or since the last time the counters were cleared.

5.4.13.10 Parity Errors

The number of parity errors from this IED since the last reset or since the last time the counters were cleared.

5.4.14 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

5.4.15 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Transdata IED Configuration								
Port # : 1 Port Name : RTU to IED								
IED # IED Name Address On Scan Slav								
IEU#	IED Name	Meter	Base	On scall	Data			
1	TD_IED_1	1	0	Y	View			
2	TD_IED_2	2	0	Y	View			
					Back			

Figure 5-9 Transdata IED Display

5.4.16 IED

The logical number of the IED on this communication channel.

5.4.17 IED Name

The name that was chosen, or accepted as default, during configuration.

5.4.18 Meter Address

The Meter address chosen, or accepted as default, during configuration.

5.4.19 Base Address

The Base address chosen, or accepted as default, during configuration.

5.4.20 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

5.4.21 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the Transdata IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23. Click either Analogs, Accumulators, or Comm Status.

Transdata IED Configuration					
Port #: 1 Port Name : RTU to IED					
IED #	IED Name	IED Name Address On Scan Slav		Slave	
		Meter	Base	On Scan	Data
1	TD_IED_1	1	0	Y	View
2	TD_IED_2	2	0	Y	View IDE # 1 X
					Ba <u>Analogs</u>
					<u>Accumulators</u> Comm Status
					Commiscatus

5.4.21.1 Analogs

From the Transdata IED Configuration screen, click View, then click Analogs. Reference the screen shown in Figure 5-11.

Figure 5-11	Transdata Analog	Inputs Display
-------------	------------------	----------------

	Transdata Ana	log Inputs Di	splay	
Port # : 2	<u>.</u>		P	ort Name : Port 2
IED #:1			IED	Name : TD_IED_1
	Page1 of 1	Go To	GO	
Point	Point Name	Point Status	Point Value	Point Counts
0	Ph A Volts	F	0.000	0
1	Ph C Volts	F	0.000	0
2	Ph B Volts	F	0.000	0
	Ph A Amps	F	0.000	0
4	Ph C Amps	F	0.000	0
5	Ph B Amps	F	0.000	0
6	Watts Total	F	-1500.000	0
7	VARS Total	F	-1500.000	0
8	VA Total	F	-1500.000	0
9	Ph A PF	F	-1.000	0
10	Ph C PF	F	-1.000	0
11	Ph B PF	F	-1.000	0
12	Amps Neutral	F	0.000	0
13	Frequency	F	57.000	0
-	-	-	-	-
-	-	-	-	-
				Back

5.4.22 Point

The logical number of the point.

5.4.23 Point Name

The point name. Only those points that were set to Yes under Add Points to Database will appear here.

5.4.24 Point Status

Please see the Config@WEB Secure Software Users Guide.

5.4.25 Point Value

The engineering unit (EGU) value being calculated by the RTU based on the settings of the EGU min, EGU max, and the current binary value being returned by the meter.

5.4.26 Point Counts

The binary counts being returned from the meter for each point.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in

the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

5.4.26.1 Accumulators

From the Transdata IED Configuration screen, click View, then click Accumulators. Reference the screen shown in Figure 5-12.

Figure 5-12	Transdata	Accumulators	Inputs	Display
-------------	-----------	--------------	--------	---------

	Transdata Accumulator Inputs Displ	ay	
Port # : 1 IED # : 1			rt Name : RTU to IED ED Name : TD_IED_1
	Page1 of 1 Go To Go]	
Point	Point Name	Point State	Count
1	Chan 1 Total Usage	F	0
1 2	Chan 1 Demand	F	0
-		-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-		-	-
-		-	-
-		-	-
-		-	-
-		-	-
-	•	-	-
-	•	-	-
-	-	-	-
			Back

5.4.27 Point

Protocol logical point number.

5.4.28 Point Name

The point name. Only those points that were set to Yes under Add Points to Database will appear here.

5.4.29 Point State

Please see the Config@WEB Secure Software Users Guide.

5.4.30 Count

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

5.4.30.1 Comm Status

From the Transdata IED Configuration screen, click View, then click Comm Status. Reference the screen shown in Figure 5-13.

	Transdata Status Inputs	Display		
Port # : 1 IED # : 1			ort Name : RTU t ED Name : TD_I	
	Page1 of 1 Go T	To GO		
Point	Point Name	Point Status	Point State	•
0	COMM STATUS		1	•
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	· ·	-	-	-
-	· · · · · · · · · · · · · · · · · · ·	-	-	-
-	· · ·	-	-	-
-				-
-			-	-
				ack

5.4.31 Point

Logical point number.

5.4.32 Point Name

Hard-coded name of the communications failure bit.

5.4.33 Point Status

Not used.

5.4.34 Point State

A Point State of 1 =Closed means the IED is in communications failure. A state of 0 =Open means there is good communications to the IED.

5.4.35 •

A red dot indicates the IED is in comm. failure; a green dot indicates the IED has valid communications.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in

the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

5.5 Cable Connections

The TransData Mark V Meter communications cable connections are shown in Table 5-2. The TransData end of the cable may be a quick disconnect.

RTU DB9M	TransData DB25F
RXD-2	TXD-23
TXD-3	RXD-10
DGND-5	DGND-11

Table 5-2 TransData Cable Connections

6 Quantum Protocol

6.1 **Communication Port Configuration**

The Quantum protocol is a protocol that communicates between the RTU and a Quantum meter using the Quantum Digital Interface Protocol (QDIP). The RTU may be configured to periodically poll one or more Quantum meters.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Quantum from the Protocol drop-down menu as shown.

	Communication	Port Configura	tion		
Port Number RTS DTR Configure IRQs	Name	Protocol	Configure Protocol		Copy to Port
Port #1 K 💌 K 💌	RTU to IED	adaman	Port 01	Configure	Сору
Port #2 K V K V	Port 2	None	Port 02	-	Сору
Port #3 K V K V	Port 3	2179 Arbiter	Port 03	-	Сору
Port #4 K 💌 K 💌	Port 4	C2020(M)	Port 04	· ·	Сору
Port #5 K 💌 K 💌	Port 5	C2100H(M) DNPM	Port 05	· ·	Сору
Port #6 K V K V	Port 6	Electran ETI	Port 06	· ·	Сору
Port #7 K ¥ K ¥	Port 7	Harris (M) Incom	Port 07	· ·	Сору
Port #8 K 🕶 K 💌	Port 8	JEM2 ASCII	Port 08	· ·	Сору
Port #9 K 🕶 K 💌	Port 9	Modbus(M) Quantum	Port 09	· ·	Сору
Port #10 K 💌 K 💌	<u>Port 10</u>	SEL Series V(M)	Port 10	· ·	Сору
Port #11 K V K V	<u>Port 11</u>	Symax Tickle	Port 11	· ·	Сору
Port #12 K 💌 K 💌	Port 12	- Transdata	Port 12	· ·	Сору
Communication Associations Cont	īg	– Tunnel – MTU-RTU – 8979			Back
		C2100H CDC I CDC II DNPR FM Harris (R) IDLC L&N			

Figure 6-1	Quantum	Communication	Port Configuration
11501001	Zuumum	communication	i on configuration

6.1.1 Port Number

Physical Port number of the RTU.

6.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

6.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

6.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

6.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

6.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name						
Name	Port	Port 1				
		Cancel	Submit			

6.1.4 Protocol

From the drop-down list, select the protocol for this port.

6.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

6.1.6 Point Operations

Click this button to assign points.

6.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

6.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

6.2 **Configure Protocol**

Under the heading Configure Protocol, click Port *n* to configure the Quantum port. As a minimum, you must enter the "Number of IEDs" this port will be connected to. You may accept all other defaults or fill in the form according to the information following Figure 2-2.

Figure 6-2 Quantum Communication Channel Configuration
Quantum Meter Communication Channel Setup

	Port # : 1	Port Name : RTU to IED
	Number of IEDs	2
	Baud Rate *	1200 💌
	Parity *	None 💌
	CTS Delay *	0 (ms)
	Rx Timeout *	5000 (ms)
	Interbyte Time *	100 (ms)
Default: 0.	Retries Before Failing Points	3 (times)
Range: 0 to 32.		Cancel Submit

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

6.2.1 Number of IEDs (0 – 32)

Enter the number of IEDs connected to this port. The default setting is 0.

6.2.2 Baud Rate (300 – 19200)

From the drop-down menu, select the baud rate. The default setting is 1200.

6.2.3 Parity (None, Odd, Even)

From the drop-down menu, select the parity for the associated channel. The default setting is None.

6.2.4 CTS Delay (0 – 250ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 0.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

6.2.5 Rx Timeout (0 – 30,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 5000ms.

6.2.6 Interbyte time (0 – 250ms)

Enter the interbyte time for the associated channel. The interbyte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 100 msec.

6.2.7 Retries Before Failing Points (0-99)

Enter the number of times the RTU will attempt communications with a device before marking all points attached to the device as failed. The default setting is 3.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

6.3 **Point Operations**

From the Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Figure 6-3 IED Configuration

Quantum IED Configuration								
Port # : 1 Port Name : RTU to IED								
IED #	IED Name	IED Address	On Scan	Slave Config	Copy to IEDn			
1	QM_IED_1	1	Y	Edit	Сору			
2	QM_IED_2	2	Y	Edit	Сору			
· · · · · · · · · · · · · · · · · · ·					Back			

6.3.1 IED

The logical number of the IED on this communication channel.

6.3.2 IED Name

Click on the IED Name. A pop-up window will appear. See section 6.3.6.1 below.

6.3.3 IED Address

Reflects the entry in the pop-up menu. See section 6.3.6.1 below.

6.3.4 On Scan

Reflects the entry in the pop-up menu. See section 6.3.6.1 below.

6.3.5 Slave Config

Click on Edit to edit the IED points. See section "4.5.16.1 Slave Configuration Edit".

6.3.6 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

6.3.6.1 IED Name & Address Configuration

When you click the name of the IED (in blue characters), a pop-up menu will appear, as shown in Figure 2-6. Edit this pop-up window according to the directions below. After editing, your choices are reflected as explained under Figure 2-5.

Quantum IED Configuration									
Port # : 1	Port #: 1 Port Name : RTU to IED								
IED #	IED Name	IED Address	On Scan	Slave Config	Copy to IEDn				
1	QM_IED_1	1	Y	Edit	Сору				
2	QM_IED_2	2	Y	Edit	Сору				
	IED #1 Configurati	on		х	Back				
	IED Name	QM_I	ED_1						
	IED Address	1							
	On Scan *	⊙ Ye	s 🔿 No	Set					

Figure 6-4 IED Configuration

6.3.7 IED Name

Accept the default name or type a name of your choosing.

6.3.8 IED Address (1 – 65534)

Enter the IED address. The default is 1.

6.3.9 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled.

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

6.3.10 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

6.3.10.1 Slave Configuration Edit

6.3.11 Slave Config

Click the Edit button to continue. A screen similar to Figure 2-10 will appear. The Quantum meter has a set of 32 registers that must be configured in the meter prior to having the RTU begin polling. The configuration on this screen should match the configuration of the meter.

Quantum Meter Configuration						
Port # : : IED # : :				Port Name : Port 2 Name : QM_IED_1		
100 #	Page 1 of 2	Gото	Go	Next >>		
Point	Name	Туре	EGU Min	EGU Max		
-1	COMM STATUS	STS				
1	REGISTER_1	ANA 💌	0	60000		
2	RECUENCE Handwith	ACC 💌	0	Click on Header to Change All		
з	Click on Header to Change All	ANA 💌	0	30000 Change All X		
4	RE Change All X	ANA 💌	0	60000 Value Set		
5	RE Mode None Set	ACC 💌	0	and/or change		
6	RE ANA ACC	ANA 💌	-60000	60000		
7	RE		-30000	30000		
8	REG.	ANA 💌	0	0		
9	REGISTER_ 9	ANA 💌	0	0		
10	REGISTER_ 10	ANA 💌	0	0		
11	REGISTER_ 11	ANA 💌	0	0		
12	REGISTER_ 12	ANA 💌	0	0		
13	REGISTER_ 13	ANA 💌	0	0		
14	REGISTER_ 14	ANA 💌	0	0		
15	REGISTER_ 15	ANA 💌	0	0		
16	REGISTER_ 16	ANA 💌	0	0		
		None ANA ACC	Car	ncel Submit		

Figure 6-5 IED Configuration

6.3.12 Point

Protocol logical point number. This number cannot be changed.

6.3.13 Name

Enter the name of the point (or accept the default name). Notice that there is an automatically-assigned Name (which cannot be changed) for the Comm Status.

6.3.14 Type (None, ANA, ACC)

From the drop-down menu, select None, ANA, or ACC to define to the RTU how the register is to be used. An entry of None defines the register to be unused and this register will not be available for mapping within the RTU. An entry of ANA (Analog) defines this register to be an analog quantity and it will be available for mapping as an analog point within the RTU. An entry of ACC (Accumulator) defines this register to be an accumulator quantity and it will be available for mapping as an accumulator point within the RTU. By selecting Type in the header, a drop-down menu will appear that allows all the register types on this page to be defined at once.

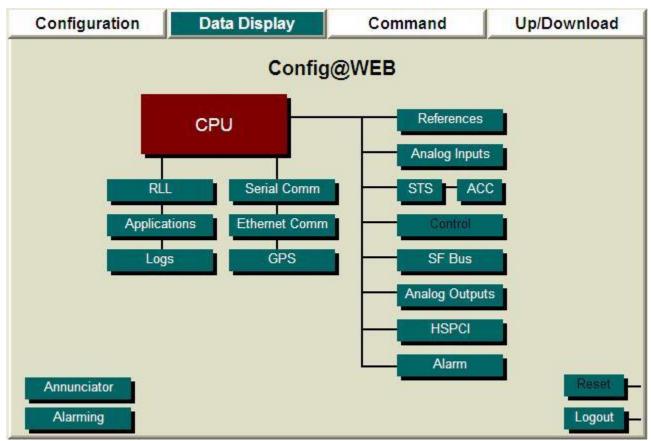
6.3.15 EGU Min

Enter a minimum engineering unit value for the point. This value is only used for registers defined as analog quantities. All entries in this column may be changed at once by clicking on the header. If ACC or None was chosen as the type of point, EGU Min will be grayed out.

6.3.16 EGU Max

Enter a maximum engineering unit value for the point. This value is only used for registers defined as analog quantities. All entries in this column may be changed at once by clicking on the header. If ACC or None was chosen as the type of point, EGU Max will be grayed out.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click Next>> to go to the next 16 points, if applicable. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click the Cancel button to discard changes and return to the IED Configuration screen. Click the Submit button to accept the changes and return to the IED Configuration screen.

Please note: No configuration changes take effect until the RTU is reset.

6.4 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 6-6 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	ĸ	K	RTU to IED	Quantum	View	Port Data
Port #2	К	K	Port 2	None	View	Port Data
Port #3	К	К	Port 3	None	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port#5	К	K	Port 5	None	View	Port Data
Port#6	К	K	Port 6	None	View	Port Data
Port #7	К	K	Port 7	None	View	Port Data
Port #8	К	K	Port 8	None	View	Port Data
Port #9	К	K	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port #11	К	К	Port 11	None	View	Port Data
Port #12	К	К	Port 12	None	View	Port Data

6.4.1 Port Number

Physical Port number of the RTU.

6.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

6.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

6.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

6.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

6.4.3 Name

The port name given during configuration or default name accepted.

6.4.4 Protocol

The configured protocol for this port.

6.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

6.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

6.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

6.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 6-8 Quantum Communication Counters Display

Quantum Communication Counters Display					
Port # : 4		Port Name : Port 4			
Point	Counter Name	Counts			
1	Messages Sent	64			
2	Messages Received	0			
3	No Replies	63			
4	Rx Timeouts	0			
5	Security Errors	0			
6	IB Timer Errors	0			
7	Overrun Errors	0			
8	Framing Errors	0			
9	Parity Errors				
Data Trap	Configure				
Data map	Connigure	Back			

i iguie o o	Quantum Commune	ation counters Display
Quantum	Communication	Counters Display

6.4.9 Point Number

A logical point number for reference only.

6.4.10 Counter Name

The following counters are monitored:

6.4.10.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

6.4.10.2 Messages Received

This indicates the cumulative number of received messages since the last reset or power-up.

6.4.10.3 No Replies

This indicates the cumulative number of transmitted messages that did not receive a response since the last reset or power-up. This count can be affected by the Rx timeout delay value.

6.4.10.4 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

6.4.10.5 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

6.4.10.6 IB Timer Errors

This indicates the cumulative number of Interbyte timer errors since the last reset or power-up. This count can be affected by the setting of the Interbyte Time in configuration.

6.4.10.7 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

6.4.10.8 Framing Errors

This indicates the cumulative number of framing errors since the last reset or power-up. This can be affected by parity.

6.4.10.9 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

6.4.11 Counts

The counts for each type of Counter.

6.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

6.4.13 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Quantum IED Display							
Port # : 2	2		Port Nam	e : Port 2			
IED #	IED Name	IED Address	On Scan	Slave Data			
1	QM_IED_1	1	Y	View			
2	QM_IED_2	2	Y	View			
				Back			

Figure 6-9 Quantum IED Display

6.4.14 IED

The logical number of the IED on this communication channel.

6.4.15 IED Name

The name that was chosen, or accepted as default, during configuration.

6.4.16 IED Address

The IED Address chosen during configuration.

6.4.17 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

6.4.18 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the Quantum IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

Port # : 2 IED # : 1		ter Dat	a Displa	Por	t Name : Port 2 me : QM_IED_1
	Page1 of 1	Go	то	GO	
Reg	Point Name	Mode	Reg Type	Point Status	Point Value
-1	COMM STATUS	STS			Open
1	REGISTER_ 1	ANA	1		0.000
2	REGISTER_ 2	ACC	2		0
3	REGISTER_ 3	ANA	5		0.000
4	REGISTER_ 4	ANA	6		0.000
5	REGISTER_ 5	ACC	7		0
6	REGISTER_ 6	ANA	8		0.000
7	REGISTER_ 7	ANA	93		0.000
8	REGISTER_ 8	ANA	26		0.000
9	REGISTER_ 9	ANA	48		0.000
10	REGISTER_ 10	ANA	27		0.000
11	REGISTER_ 11	ANA	49		0.000
12	REGISTER_ 12	ANA	28		0.000
13	REGISTER_ 13	ANA	71		0.000
14	REGISTER_ 14	ANA	50		0.000
15	REGISTER_ 15	ANA	16		0.000
16	REGISTER_ 16	ANA	29		0.000
					Back

Figure 6-10 Quantum IED Display

6.4.19 Reg

The Register number that is the source of the point.

6.4.20 Point Name

The name that was chosen, or accepted as default, during configuration.

173

6.4.21 Mode

Displays the data type as defined in the RTU for each register.

6.4.22 Reg Type

This number shows the variables coming back from the IED. This value is returned in Octet 2 of the program table. Consult the IED manufacturer's documentation that came with the meter.

6.4.23 Point State

Please see the Config@WEB Secure Software Users Guide.

6.4.24 Point Value

The value being returned from the meter for each register.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

6.5 **RS-232 Interface**

Unless a splitter or other multi-dropline device is used, only one meter may be connected to an RS-232 communication port at the RTU (i.e., two or more meters may not share the same communication port). However, additional RTU RS-232 communication ports may be connected to additional meters.

Figure 6-11 shows the connections between an RS-232 RTU and a Quantum Meter using a direct RS-232 connection.

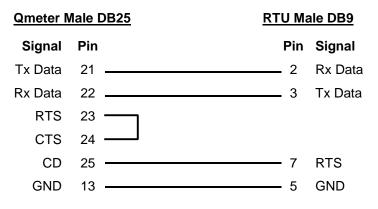


Figure 6-11 Quantum Meter Cable

7 Arbiter

Arbiter is a protocol that communicates between the RTU and the Arbiter Systems GPS Satellite-Controlled Clock. This clock supplies time syncs once per second from an RS232 port.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Arbiter from the Protocol drop-down menu as shown.

	Communication Port Configuration								
Port Number	RTS	DTR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations	Copy o Port
Port #1	К 💌	К 🛩		RTU to IED	Arbiter	*	Port 01	· .	Сору
Port #2	К 🛩	К 🛩	IRQ6	Port 2	None RTU-IED	-	Port 02	-	Сору
Port #3	К 🛩	К 🛩	IKQ0	Port 3	2179		Port 03	-	Сору
Port #4	К 🛩	К 🛩		Port 4	Arbiter C2020(M)		Port 04	•	Сору
Port #5	К 💌	К 🛩		Port 5	C2100H(M) DNPM		Port 05	· .	Сору
Port #6	К 💌	К 🛩	IRQ6 🔽	Port 6	Electran ETI		Port 06	· .	Сору
Port #7	К 💌	К 🛩	IRQ0 ¥	Port 7	Harris (M)		Port 07	· .	Сору
Port #8	К 💌	К 🛩		Port 8	Incom JEM2 ASCII	=	Port 08	· .	Сору
Port #9	К 🛩	К 🛩		Port 9	Modbus(M) Quantum		Port 09	· .	Сору
Port #10	К 💌	К 🛩	IRQ6 🔽	<u>Port 10</u>	SEL Series V(M)		Port 10	-	Сору
Port #11	К 💌	К 🛩	IRQ0 ¥	<u>Port 11</u>	Symax		Port 11	-	Сору
Port #12	К 🛩	К 🛩		<u>Port 12</u>	Tickle Transdata		Port 12	· .	Сору
Communica	ation A	Associ	ations Con	fig	Tunnel MTU-RTU				Back
					8979 C2100H CDC I CDC II DNPR FM Harris (R) IDLC L&N	~			

Figure 7-1 Arbiter Communication Port Configuration

7.1.1 Port Number

Physical Port number of the RTU.

7.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

7.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

7.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

7.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

7.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name					
Name Port 1					
Cancel Submit					

7.1.4 Protocol

From the drop-down list, select the protocol for this port.

7.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

7.1.6 Point Operations

Click this button to assign points.

7.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

7.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

Default: 50.

Range: 0 to 250.

7.2 **Configure Protocol**

Under the heading Configure Protocol, click Port *n* to configure the Arbiter port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Arbiter Communication Channel Setup				
Port#:1	Port Name : RTU to IE			
Baud Rate *	9600 💌			
Parity *	None 💌			
Data Bits *	8 🛩			
Stop Bits *	1 💌			
CTS Delay *	50 (ms)			
Rx Timeout *	500 (ms)			
B4 Time *	50 (ms)			
Interbyte Time *	50 (ms)			
Modem Turn Off Time *	0 (ms)			
Hardware CTS	⊙No ○Yes			
Hardware DCD	⊙ No ◯ Yes			
Time Format	● Local ○ UTC			
	Cancel Submit			

E:	A	Commenter	Classes 1	Carfinnetian
Floure /-/	Arniter	Communication	t nannei	Configuration
I Iguie / Z	1 in Oiter	Communication	Channel	Comfguiudon

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for CTS Delay.

7.2.1 Baud Rate (300 – 19200)

From the drop-down menu, select the baud rate. The default setting is 9600.

7.2.2 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is None.

7.2.3 Data Bits (5,6,7,8)

Enter the data bits for the associated channel. The default setting is 8.

7.2.4 Stop Bits (0,1,2)

Enter the stop bits for the associated channel. The default setting is 1.

7.2.5 CTS Delay (0 – 250ms)

Enter the clear-to-send delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 50.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

7.2.6 Rx Timeout (0 – 30,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 500.

7.2.7 B4 Time (0 – 250ms)

Enter the B4 time for the associated channel. The B4 time is the length of quiet time required on the channel following a transmission from the RTU prior to turning on the RTU's receive interrupts. Default setting 50.

7.2.8 Inter-byte time (0 – 250ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 50 msec.

7.2.9 Modem Turn Off Time (0 – 250ms)

Enter the delay time that the modem will maintain the carrier after the last data byte has been transmitted. Default setting is 0.

7.2.10 Hardware CTS (No, Yes)

Click the radio button for Yes if you want the Hardware Clear-To-Send option selected. When this option is selected, the Arbiter will not be polled unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. The default setting is No.

7.2.11 Hardware DCD (No, Yes)

Click the radio button for Yes if you want the Hardware DCD selected. When this option is selected, the channel communications driver will accept requested message data bytes only if the carrier is detected by the modem. If the carrier is not detected, the data bytes are discarded. The default setting is No.

7.2.12 Time Format (Local, UTC)

Note: The coordination between UTC and local time is a feature that may be ignored. If you want your RTU to act as it always has in regards to time syncs, set Time Format to Local Time. See Time Configuration Settings in the Configuration chapter of the hardware manual for time settings under the CPU block.

If you want time synchronization from this device, you must know whether the device is sending Local time or UTC time, then set this radio button to match.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

7.3 **Point Operations**

The Arbiter has no point operations.

7.4 Data Display

The Arbiter has no Data Display functions.

7.5 Arbiter Systems Satellite-Controlled Clock Interface

7.5.1 Arbiter Systems Model 1084A/B/C

7.5.2 GPS Satellite-Controlled Clock

The following example configures the Arbiter Systems Satellite-Controlled Clock for use with the Telvent SAGE RTU.

In the following example:

- 1. [ENTER] means to press the [ENTER] key on the Arbiter keypad.
- 2. [SETUP] means to press the [SETUP] key on the Arbiter keypad.
- 3. All other information between the characters "[" and "]" is directions used to set the value.

The firmware interface for the Arbiter Systems Satellite-Controlled Clock expects the clock to be configured in the following way:

```
Set Main RS-232? [ENTER]

Set Port Config? [ENTER]

Set Baud Rate = 9600 [change to 9600] [ENTER]

Set Word Length = 8 Bits [change to 8 bits] [ENTER]

Set Stop Bits = 1 [change to 1] [ENTER]

Set Parity = OFF [change to OFF] [ENTER]

Set Broadcast? [ENTER]

Set Broadcast = EXT. ASCII [change to EXT. ASCII] [ENTER]

Select UTC or Local = Local [change to UTC] [ENTER]

Set A Event [SETUP]

Set Local Hour [ENTER]

Set Daylight Saving = ON [change to ON] [ENTER]

Set local offset = 5 [change to correct value for local time] [ENTER]

All other setup items, use [SETUP]
```

When configured in this manner, the Arbiter will transmit the UTC time once each second at the top of the second.

As there is no security for the broadcast message, the RTU does reasonability checks on the data received from the clock.

The clock data is rejected for any of the following reasons:

- 1. Total of 26 bytes not received from clock
- 2. 1st byte not <CR>
- 3. 2nd byte not <LF>
- 4. Time Quality Indicator not ' ' or '?'

- 5. 4th byte not ''
- 6. Year digits not in range of 00 through 99
- 7. 7th byte not ' '
- 8. Day digits not in the range of 001 through 365 for normal year or 001 through 366 for leap year
- 9. 11th byte not ''
- 10. Hour digits not in the range of 00 to 23
- 11. 14th byte not ':'
- 12. Minute digits not in the range of 00 to 59
- 13. 17th byte not ':'
- 14. Second digits not in the range of 00 to 59
- 15. 20th byte not '.'
- 16. Milliseconds digits not "000"
- 17. 24th, 25th or 26th byte not ' '

Since the year field is only two digits, any year received from the clock that is 70 or greater is assumed to be in the 20th century (19XX).

Any year received that is 70 or less is assumed to be in the 21st century (20XX).

If the RTU does not receive a valid time message from the Arbiter, the RTU will transmit a "B5" ASCII message to the clock in an attempt to cause the clock to change its time message to the correct format for the RTU firmware to interpret.

The Arbiter sends the time to the RTU every second; the Arbiter driver uses every tenth time sample to set the system time.

8 Electran

The Config@WEB RTU is programmed to accept data in burst mode from one or more Electran units.

The Electran is a substation metering device that accepts metered analog inputs, performs A/D conversion of these inputs, mathematically processes them, and outputs them in digital form as pseudo-analog and pseudo-accumulator quantities.

8.1 Burst Mode Data Transmission

The user can configure the RTU to operate with one or more Electran units. The meter data is stored in the RTU internal database for transmission to the master station.

Data communication with the RTU is at 4800 bps asynchronous. Analog points and accumulator points are transmitted in burst mode, with an updated data burst transmitted every three seconds.

Each analog data point uses a 3-byte packet as follows:

Bit #	7	6	5	4	3	2	1	0
1st byte	0			р	oint # () - 127		
2nd byte	1	1		1	MS 6 D	ata Bit	s	
3rd byte	1	1			LS 6 D	ata Bits	5	

Bit 6 of the first byte allocates RTU space for 64 or 128 analogs (0=64).

Each accumulator data point uses a 3 byte packet as follows:

Bit #	7	6	5	4	3	2	1	0
1st byte	1	0	0		poi	nt # 0 -	31	
2nd byte	1	1		1	MS 6 D	ata Bit	5	
3rd byte	1	1			LS 6 D	ata Bits		

Bit 4 of the first byte allocates RTU space for 16 or 32 analogs (0=16).

Binary	Sign	Analog
111111111111	+	Full Scale Positive
10000000001	+	1/2048 Full Scale Positive
10000000000	0	Zero
011111111111	-	1/2048 Full Scale Negative
00000000000	-	Full Scale Negative

Where one channel with 128 pseudo-analogs and 32 pseudo-accumulators is used, one bit in the first of the three data bytes for each pseudo data point will be set for pseudo analog points 64 through 127 and pseudo accumulator points 17 through 31.

The Electran accumulator count continually cycles and has a rollover of FFE (Hex). The RTU increments its accumulator count by a delta amount equal to the present value received from the Electran minus the previous value. If loss of power causes the RTU to reinitialize, the Electran will send a value of FFF (Hex) to the RTU for a period of 10-15 seconds. This will reset the RTU accumulator reference to zero, thereby resynchronizing the RTU accumulators.

8.2 **Communication Port Configuration**

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Electran from the Protocol drop-down menu as shown.

Communication Port Configuration										
Port Number	RTS D	TR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations	Copy to Port	
Port #1	К 🕶 К	*		RTU to IED	Electran	~	Port 01	Configure	Сору	/
Port #2	К 🕶 К	*	more	Port 2	None - RTU-IED -	^	Port 02	· ·	Сору	/
Port #3	К 🕶 К	*	IRQ6	Port 3	2179		Port 03	· ·	Сору	
Port #4	К 🕶 К	*		Port 4	Arbiter C2020(M)		Port 04	· ·	Сору	,
Port #5	К 🕶 К	*		Port 5	C2100H(M) DNPM		Port 05	-	Сору	,
Port #6	К 🕶 К	*	1000	Port 6	Electran		Port 06	-	Сору	<i>,</i>
Port #7	К 🛩 К	*	IRQ6 💌	Port 7	Harris (M)		Port 07	-	Сору	,
Port #8	К 🕶 К	*		Port 8	Incom JEM2 ASCII	=	Port 08	-	Сору	,
Port #9	К 🕶 К	*		Port 9	Modbus(M) Quantum		Port 09	-	Сору	,
Port #10	К 🕶 К	*		<u>Port 10</u>	SEL		Port 10	·)	Сору	,
Port #11	К 🕶 К	*	IRQ6 🚩	<u>Port 11</u>	Series V(M) Symax		Port 11	-	Сору	,
Port #12	К 🕶 К	*		<u>Port 12</u>	Tickle Transdata		Port 12	-	Сору	,
Communic	ation As	socia	ations Con	fig	Tunnel - MTU-RTU -				Bac	ck
	.2.1		Port Nu	_	8979 C2100H CDC I CDC II DNPR FM Harris (R) IDLC L&N	~				

Figure 8-1 Communication Port Configuration

0.Z.I Port Number

Physical Port number of the RTU.

8.2.2 **RTS and DTR**

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

8.2.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

"H" represents Positive RS232 Voltage. 8.2.2.2

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power

RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

8.2.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

8.2.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name					
Name Port 1					
		Cancel	Submit		

8.2.4 Protocol

From the drop-down list, select the protocol for this port.

8.2.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

8.2.6 Point Operations

Click this button to assign points.

8.2.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

8.2.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

8.3 Configure Protocol

Under the heading Configure Protocol, click Port *n* to configure the Electran port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

	Electran communication channel setu			
	Port #	‡:1 P	ort Nam	<u>e : RTU to</u> IED
	В	Baud Rate *	4800	×
	P	Parity *	Odd 🕚	×
	D)ata Bits *	8 🛩	
	s	Stop Bits *	1 🛩	
	R	Rx Timeout *	6000	(ms)
	D	Delay for first byte *	10	(ms)
Default: 6000.	Ir	nterbyte Time *	10 ((ms)
Range: 0 to 60000.		0	ancel	Submit

Figure 8-2 Electran Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Rx Timeout.

8.3.1 Baud Rate (300 – 19200)

From the drop-down menu, select the baud rate. The default setting is 4800.

8.3.2 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is Odd.

8.3.3 Data Bits (5,6,7,8)

Enter the data bits for the associated channel. The default setting is 8.

8.3.4 Stop Bits (0,1,2)

Enter the stop bits for the associated channel. The default setting is 1.

8.3.5 Rx Timeout (0 – 60,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 6000.

8.3.6 Delay for First Byte (1ms) (0 to 60,000)

Enter the delay time for the associated channel. This is the time allowed for a Slave Device to begin its response before the MTU assumes it is not going to reply and moves on to the next device. This parameter is typically set long because of delays in IED response. Valid entries are in the range of 0-60,000 ms. The default setting is 10 ms.

Note: This timer must be <u>less</u> than Rx Timeout (above).

8.3.7 Interbyte time (0 – 250ms)

Enter the interbyte time for the associated channel. The interbyte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 10 msec.

Please note: No configuration changes take effect until the RTU is reset.

8.4 **Point Operations**

From the Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear.

Electran IED Configuration					
Port # 1 Port Name : RTU to IED IED # : 1 IED Name : Electran_IED_1					
Туре	Number	Edit			
Analogs Inputs	128	Edit			
Accumulators	32	Edit			
		Back			

Figure 8-3 Electran IED Configuration

8.4.1 Type

The type of point.

8.4.2 Number

8.4.2.1 Analog Inputs (0 – 128)

Enter the number of Analog points.

8.4.2.2 Accumulators (0 – 32)

Enter the number of Accumulators points.

8.4.3 Edit

Click the Edit button to edit points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

8.4.4 Electran Analog Input Configuration

From the Electran IED Configuration screen, click on Edit for Analogs. A screen similar to Figure 2-13 will appear.

Figure 8-4	Electran	Analog	Input	Configuration
------------	----------	--------	-------	---------------

	Electran Analog Input Configuration	on	
Port # 1 IED # : 1			ame : RTU to IED e : Electran_IED_1
IED # . I	Page 1 of 8 GoTo	_	Next >>
		io]	
Point	Name	EGU Min	EGU Max
0	IED_ANALOG 0	-100	100
1	IED_ANALOG 1	-100	100
2	IED_ANALOG 2	-100	100 Click on Header to Change All
3	IED_ANALOG 3	-100	100 Change All X
4	IED_ANALOG 4	-100	100 Value Set
5	IED_ANALOG 5	-100	100 and/or change
6	IED_ANALOG 6	-100	100
7	IED_ANALOG 7	-100	100
8	IED_ANALOG 8	-100	100
9	IED_ANALOG 9	-100	100
10	IED_ANALOG 10	-100	100
11	IED_ANALOG 11	-100	100
12	IED_ANALOG 12	-100	100
13	IED_ANALOG 13	-100	100
14	IED_ANALOG 14	-100	100
15	IED_ANALOG 15	-100	100
		Can	cel Submit

8.4.5 Point

Protocol logical point number. This number cannot be changed.

8.4.6 Name

Enter the name of the point (or accept the default name).

8.4.7 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

8.4.8 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

8.4.9 Electran Accumulators Configuration

From the Electran IED Configuration screen, click on Edit for Accumulators. A screen similar to Figure 8-5 will appear.

	Electran Accumulators Configuration
Port # 1 IED # : 1	Port Name : RTU to IED IED Name : Electran_IED_1
	Page 1 of 2 GoTo Go Next >>
Point	Name
0	IED_ACC_ 0
1	IED_ACC_ 1
2	IED_ACC_ 2
3	IED_ACC_ 3
4	IED_ACC_4
5	IED_ACC_ 5
6	IED_ACC_ 6
7	IED_ACC_7
8	IED_ACC_ 8
9	IED_ACC_ 9
10	IED_ACC_10
11	IED_ACC_11
12	IED_ACC_12
13	IED_ACC_13
14	IED_ACC_14
15	IED_ACC_15
	Cancel Submit

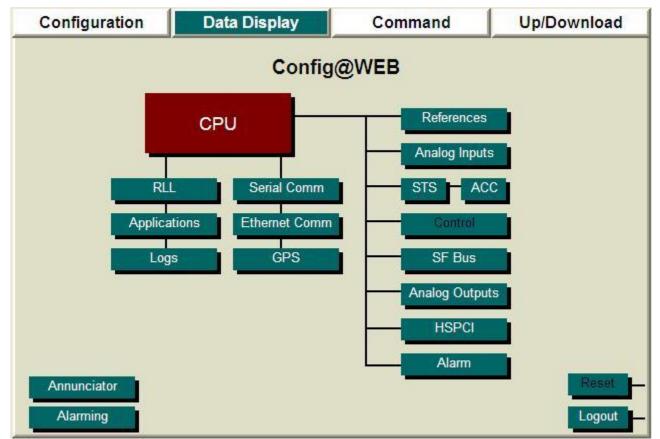
Figure 8-5 Electran Accumulators Configuration

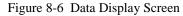
8.4.10 Point

Protocol logical point number. This number cannot be changed.

8.4.11 Name

Enter the name of the point (or accept the default name).


Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

8.5 Data Display

Click the Data Display tab as shown in Figure 2-18.

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 8-7 Display Communication Port Data	Figure 8-7	Display	Communication	Port Data
--	------------	---------	---------------	-----------

Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	ĸ	K	RTU to IED	Electran	View	Port Data
Port #2	К	К	Port 2	None	View	Port Data
Port #3	К	ĸ	Port 3	None	View	Port Data
Port #4	К	ĸ	Port 4	None	View	Port Data
Port #5	К	К	Port 5	None	View	Port Data
Port #6	К	ĸ	Port 6	None	View	Port Data
Port #7	К	К	Port 7	None	View	Port Data
Port #8	К	К	Port 8	None	View	Port Data
Port #9	К	К	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port #11	К	К	Port 11	None	View	Port Data
Port #12	К	К	Port 12	None	View	Port Data

8.5.1 Port Number

Physical Port number of the RTU.

8.5.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

8.5.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

8.5.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

8.5.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

8.5.3 Name

The port name given during configuration or default name accepted.

8.5.4 Protocol

The configured protocol for this port.

8.5.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

8.5.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

8.5.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

8.5.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 8-8 Electran Communication Counters Display

l	Electran Communication Counter	s Display
Port # : 1		Port Name : Port 1
Point	Counter Name	Counts
1	Msgs Received	0
2	RX Timeouts	21
3	B4 Timeouts	0
4	IB Timeouts	0
	Parity Errors	
6	Overruns	0
7	Framing Errors	0
Data Trap	Configure	
		Back

Electran Communication Counters Display

8.5.9 Point

A logical point number for reference only.

8.5.10 Counter Name

The following counters are monitored:

8.5.10.1 Messages Received

This indicates the cumulative number of valid received messages since the last reset or power-up.

8.5.10.2 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

8.5.10.3 B4 Timeouts

This indicates the cumulative number of B4 Timer Violations. This count can be affected by the setting of the Delay for first byte in configuration.

8.5.10.4 IB Timer Errors

This indicates the cumulative number of IB Timer errors since the last reset or power-up.. This count can be affected by the setting of the Interbyte Time in configuration.

8.5.10.5 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

8.5.10.6 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

8.5.10.7 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

8.5.11 Counts

The counts for each type of Counter.

8.5.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

8.5.13 Electran IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Electran IED Display						
Port # : 1 IED # : 1		ame : RTU to IED : Electran_IED_1				
Туре	Number	View				
Analog Inputs	128	View				
Digital Inputs	1	View				
Accumulators	32	View				
		Back				

Figure 8-9 Electran IED Display

8.5.14 Type

The type of point.

8.5.15 Number

The number of points of each type configured for this logical RTU.

8.5.16 View

Click the View button to view points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

8.5.16.1 Analog Inputs

From the Electran IED Configuration screen, click View for Analog Inputs. Reference the screen shown in Figure 5-11.

Figure 8-10 Electran Analog Inputs Display

Electran Analog Inputs Display

Electran Analog inputs Display						
Port # : 1 IED # : 1				ame : RTU to IED : Electran_IED_1		
	Page1 of 8 Go 1	ro Go		Next>>		
Point	Point Name	Point Status	Point Value	Point Counts		
0	IED_ANALOG 0	F	-100.000	-2048		
1	IED_ANALOG 1	F	-100.000	-2048		
2	IED_ANALOG 2	F	-100.000	-2048		
3	IED_ANALOG 3	F	-100.000	-2048		
4	IED_ANALOG 4	F	-100.000	-2048		
5	IED_ANALOG 5	F	-100.000	-2048		
6	IED_ANALOG 6	F	-100.000	-2048		
7	IED_ANALOG 7	F	-100.000	-2048		
8	IED_ANALOG 8	F	-100.000	-2048		
9	IED_ANALOG 9	F	-100.000	-2048		
10	IED_ANALOG 10	F	-100.000	-2048		
11	IED_ANALOG 11	F	-100.000	-2048		
12	IED_ANALOG 12	F	-100.000	-2048		
13	IED_ANALOG 13	F	-100.000	-2048		
14	IED_ANALOG 14	F	-100.000	-2048		
15	IED_ANALOG 15	F	-100.000	-2048		
				Back		

8.5.17 Point

The logical number of the point.

8.5.18 Point Name

The point name.

8.5.19 Point State

Please see the Config@WEB Secure Software Users Guide.

8.5.20 Point Value

The engineering unit (EGU) value being calculated by the RTU based on the settings of the EGU min, EGU max, and the current binary value being returned by the meter.

8.5.21 Point Counts

The binary counts being returned from the meter for each point.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

8.5.21.1 Digital Inputs

From the Electran IED Configuration screen, click View for Digital Inputs. Reference the screen shown in Figure 8-11.

Note: The only Digital Input point available is the COMM_STS.

	Electran Status	s Inputs Displa	ay		
Port # : 1 IED # : 1				rt Name : RTU t ame : Electran_i	
	Page1 of 1	Go To	Go		
Point	Point Name		Point Status	Point State	•
-1	COMM_STS			CLOSE	•
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
-	-		-	-	-
•	-		-	-	-
-	-		-	-	-
•	-		-	-	lack

Figure 8-11 Electran Digital Inputs Display

8.5.22 Point

The logical number of the point.

8.5.23 Point Name

The point name. The only Digital Input point available is the COMM_STS.

8.5.24 Point Status

Not applicable to Electran.

8.5.25 Point State

Indicates that point is either OPEN or CLOSED.

8.5.26 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Note: A CLOSED (red) point indicates that the comm. channel is failed. An OPEN (green) point indicates that the comm. channel is operational.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

8.5.26.1 Accumulators

From the Electran IED Display screen, click View, then click Accumulators. Reference the screen shown below.

	Electran Accumulator Inputs Displa	ay	
Port # : 1 IED # : 1			rt Name : RTU to IED ame : Electran_IED_1
	Page1 of 2 Go To Go		Next>>
Point	Point Name	Point Status	Count
1	IED_ACC_ 0	F	0
2 3	IED_ACC_ 1	F	0
3	IED_ACC_ 2	F	0
4	IED_ACC_ 3	F	0
5	IED_ACC_ 4	F	0
6	IED_ACC_ 5	F	0
7	IED_ACC_ 6	F	0
8	IED_ACC_ 7	F	0
9	IED_ACC_ 8	F	0
10	IED_ACC_ 9	F	0
11	IED_ACC_ 10	F	0
12	IED_ACC_ 11	F	0
13	IED_ACC_ 12	F	0
14	IED_ACC_ 13	F	0
15	IED_ACC_ 14	F	0
16	IED_ACC_ 15	F	0
			Back

Figure 8-12 Electran Accumulators Inputs Display

8.5.27 Point

Protocol logical point number.

8.5.28 Point Name

The point name.

8.5.29 Point State

Please see the Config@WEB Secure Software Users Guide.

8.5.30 Count

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

9 SEL

9.1 Special Features

The SEL protocol communicates between the RTU and a SEL relay controller. The SEL interface allows for fast meter, fast target, and fast operate communications between the RTU and the SEL relay controller.

The RTU can be configured to poll one or more SEL controllers using SEL protocol. Each SEL controller requires its own physical connection to the RTU via a communications port because this type of SEL interface cannot be party-lined. Most of the newer SEL relays support the DNP protocol, which can be party-lined. However, DNP does not support the port tunneling function most relay personnel are interested in (see below).

9.1.1 Auto Configuration

The Auto Configuration feature saves time. When you click on AUTO_CONFIG, the RTU interrogates the newer-style relay controllers for their configuration, including point names, and populates the RTU's database. Once the SEL device's configuration is uploaded to the RTU, it is a simple drag-and-drop task to map the points of interest to the protocols or applications within the RTU.

9.1.2 Tunnel Function

In addition to fast messaging, this interface allows you to tunnel directly through the RTU to a SEL port. You can use terminal messages to change relay configuration, check on relay health, and to get relay reports and files not normally associated with SCADA data. This tunneling function is independent of polling. That means you may query the SEL controller while the RTU performs its normal polling operations.

9.2 **Communication Port Configuration**

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click SEL from the Protocol drop-down menu as shown.

Figure 9-1 Communication Port Configuration

Communication Port Configuration

	Communication Fort Configuration									
Port Number	RTS	DTR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations		Copy o Port
Port #1	K 🛩	К 🛩		RTU to IED	None	^	Port 01	Configure		Сору
Port #2	К 🛩	К 🛩	IRQ6	Port 2	- <i>RTU-IED</i> - 2179		Port 02	-		Сору
Port #3	К 🛩	К 🛩	IKQ0	Port 3	Arbiter C2020(M)		Port 03	· .		Сору
Port #4	К 🛩	К 🛩		<u>Port 4</u>	C2100H(M) DNPM		Port 04	· .		Сору
Port #5	К 🛩	К 🛩		<u>Port 5</u>	Electran		Port 05	· .		Сору
Port #6	К 🛩	К 🛩	IRQ6 🔽	Port 6	ETI Harris (M)		Port 06	-		Сору
Port #7	K 💌	К 🛩		<u>Port 7</u>	Incom JEM2 ASCII		Port 07	-		Сору
Port #8	К 🛩	К 🛩		Port 8	Modbus(M)		Port 08	· .		Сору
Port #9	К 🛩	К 🕶		<u>Port 9</u>	Quantum SEL		Port 09	· .		Сору
Port #10	К 🛩	К 🛩	IRQ6 🔽	<u>Port 10</u>	Series V(M) Svmax		Port 10	· .		Сору
Port #11	К 🛩	К 🛩	IRQ0 ¥	<u>Port 11</u>	Tickle Transdata		Port 11	-		Сору
Port #12	К 🛩	К 🛩		<u>Port 12</u>	Tunnel		Port 12	· .		Сору
Communica	ation 4	Associ	ations Con	fig	 <i>MTU-RTU –</i> 8979 C2100H CDC I CDC II DNPR FM Harris (R) IDLC L&N 	*				Back
		Port	Number							

Port Number

Physical Port number of the RTU.

RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

9.2.1.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

9.2.1.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is

complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

9.2.1.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name			
Name Port 1			
	Cancel	Submit	

Protocol

From the drop-down list, select the protocol for this port.

Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

Point Operations

Click this button to assign points.

Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

Configure Protocol 9.3

Under the heading Configure Protocol, click Port *n* to configure the SEL port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

SEL Communication Channel Setup			
Port#:1			ort Name : RTU to IED
	General Setup	Event Setup	
Relay Name		Get Event Data (HIS)	⊙ No O Yes
Protocol Type	SEL_AUTO V AUTO_CONFIG	Event/SER Buffer Size	64 (kBytes)
Relay Type	Unknown	Check Events Interval	300 (sec)
Level 1 Password	OTTER	Cycle Time After Event	15 (sec)
Check ID on Restart	○ None ④ Full ○ Relay Type Only	Ignore Events Older Than	2 (hours)
Include Targets	○No ⊙Yes	Time to Ignore Events After Event	15 (sec) and
Get SER Data	⊙No OYes	Reset Location after	ignore times out 🗌
Check SER Interval	10 (sec)	Get Fault Data (EVE)	◎ No 🔿 Yes
SER Records to Read	5	Samples per Cycle	● 4 ○ 16
Baud Rate *	9600 💌	Events to Store	5
Parity *	None 💌		
Data Bits *	8 🕶		
Stop Bits *	1 💌		
CTS Delay *	20 (ms)		
Rx Timeout*	5000 (ms)		
Delay for first byte *	1000 (ms)		
Interbyte Time *	20 (ms)		
Retries Before Failing Points	3		
Hardware CTS	⊙No ○Yes		
Hardware DCD	⊙No ⊖Yes		
Poll Time	100 (ms)		
Accumulator Units	Kilo 💌		
Invert Trip/Close	⊙No ○Yes		
		Export Import	Cancel Submit

Auto Configuration is a special feature explained in the next section.

Note: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

9.3.1 AUTO_CONFIG

For the AUTO_CONFIG to work, the SEL task must be running in the RTU. This means you must select "SEL" as a protocol, reset the RTU, then perform the AUTO_CONFIG steps. Follow the **Notes** steps to ensure proper functioning.

Notes:

- 1) Select SEL for the protocol on the port of choice.
- 2) Set the communications parameters correctly (baud rate, etc.) for the particular SEL device.
- 3) Select "SEL_AUTO" for "Protocol Type" field beside the AUTO_CONFIG button.
- 4) Enter the correct Level1 Password for the SEL device.
- 5) Reboot the RTU. This allows the SEL task to start running.
- 6) Run AUTO_CONFIG as detailed below.
- 7) Select the data points to be stored in the RTU database.
- 8) Reboot the RTU. This allows the RTU to start scanning the IED for its configured I/O points.

9.3.1.1 Detailed Procedure

Note: If event data or Sequence of Events Report (SER) data are required, set the appropriate checkboxes, click "Submit" and return to the configuration page before clicking on AUTO_CONFIG. The RTU needs to send additional commands to the relay to acquire data on these inputs.

When you select SEL_AUTO as the Protocol Type, then click the AUTO_CONFIG button, the RTU queries the SEL device's database, then brings those points, including point names, back to the RTU. The process is shown in the series of Figures below.

Click OK in response to the above dialog box. You will get a sequence of messages on the progress of AUTO_CONFIG, as shown below. The final message should be "Auto Config completed successfully", as shown.

Auto Config Status.	Auto Config Status.	Auto Config Status.	
Replacing Config.	Starting Auto Config.	Logging on	

Auto Config Status.	Auto Config Status.	Auto Config Status.
Getting ID	Getting FM config	Getting DI names

The end result of a successful Auto Config is shown in Figure 9-3. Notice the comments. Also shown is the result of clicking "Get Event Data." If Auto Config fails, Table 9-1 shows the meaning of failure messages.

Figure 9-3	After Running Auto Configure
1	The realized by the second sec

Port # : 1	SEL Communication Channel		rt Name : RTU to IED
Relay Name	SEL-351	an AUTO_CONFIG.	⊙No OYes
Protocol Type	SEL_AUTO V AUTO_CONFIG		64 (kBytes)
Relay Type	Unknown	Check Events Interval	300 (sec)
Level 1 Password	OTTER	Cycle Time After Event	15 (sec)
Check ID on Restart	○ None ⊙ Full ○ Relay Type Only	Picks up the Relay	2 (hours)
Include Targets	○No ⊙Yes	Type (FID) from the ent	15 (sec) and
Get SER Data	⊙No ○Yes	SEL device. This field is <u>not</u> editable.	ignore times out
Check SER Interval	10 (sec)	Get F	● No ○ Yes
SER Records to Read	5	Samples per Cycle	④ 4 ○ 16
Baud Rate *	9600 💌	Events to Store	5
Parity *	None 💌		
Data Bits *	8 💙		
Stop Bits *	1 💙		
CTS Delay *	20 (ms)		
Rx Timeout*	5000 (ms)		
Delay for first byte *	1000 (ms)		
Interbyte Time *	20 (ms)		
Retries Before Failing Points	3		
Hardware CTS	⊙No OYes		
Hardware DCD	⊙No OYes		
Poll Time	100 (ms)		
Accumulator Units	Kilo 💌		
Invert Trip/Close	⊙No ⊖Yes		
efault: 5000. ange: 0 to 60000.		Export Import (Cancel Submit

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Rx Timeout.

If the auto configuration process detects an error, one of the following failure messages may be displayed.

Table 9-1	SEL Auto Config Failure Messages
I dole / I	SEE Muto Coning I andre Messages

Message	Meaning
Failed to log in	Unable to obtain Level 1 access to the relay. This most often occurs either because the
	baud rate or the password was incorrect.
Failed to get ID	Did not get a recognizable response to either the ID command or the SHOWSET
	command
Failed getting FM config	Unable to read the Fast Meter configuration message A5C1*
Failed to read BNA	Unable to read the binary names via the BNA command.
Failed to read DNA	Unable to read digital point names via the DNA command.
Failed Fast Operate cfg	Unable to read the Fast Operate configuration message A5CE*
Failed - no memory.	Unable to obtain temporary memory space in the RTU.
Failed to open IED file	Could not open the SEL IED configuration file iedspr.xml
Failed open template file	Could not open the protocol template configuration file ptemp.xml
Failed updating ANA tags	An error occurred wile updating the configuration file for SEL analog points.
Failed reading CAS	Could not read or parse the compressed ASCII (CAS) response needed for processing
	event data.
Failed reading HIS	Could not read or parse the uncompressed event history (HIS) response.
Failed reading CEV	Could not read or parse the compressed event (CEV) segment of the CAS response
	needed to process full (CEV) event reports.
Failed updating STS tags	An error occurred while updating the SEL status point configuration file.
Failed updating SBO tags	An error occurred wile updating the control output configuration file.
Failed to open port file	Could not open the port file (portxx.xml) for update.
Failed to update config	An error occurred in updating the IED configuration file iedspr.xml
Finished failed	Auto configururation failed for an unknown reason.

* Refer to SEL Application Guide AG95-10 for the formats of the auto configuration messages.

Relay Name

Type in the name of the relay. AUTO_CONFIG will pick up the name from the SEL (RID), but it will still be editable.

Protocol Type

Select a protocol type from the drop-down menu. The choices are as follows:

9.3.1.2 SEL AUTO and AUTO_CONFIG

Select "SEL_AUTO" to perform auto configuration and follow steps above. This works with newer relays (300 and above). The AUTO_CONFIG button is not valid for any other "protocol types". SEL AUTO is the default.

9.3.1.3 X51

Select X51 for protocol type if the relay is a SEL 151 or 251. The RTU will automatically default to an appropriate configuration for this type of relay.

9.3.1.4 X21

Select X21 for protocol type if the relay is a SEL 121 or 221. The RTU will automatically default to an appropriate configuration for this type of relay.

9.3.1.5 XPG10

Select XPG10 for protocol type if the relay is a SEL 1PG10 or 2PG10. The RTU will automatically default to an appropriate configuration for this type of relay.

9.3.1.6 X21F

Select X21F for protocol type if the relay is a SEL 121F or 221F. The RTU will automatically default to an appropriate configuration for this type of relay.

Note: Some versions of X21F firmware may not work unless "Include Targets" is set to "No".

9.3.1.7 X51C

Select X51C for protocol type if the relay is a SEL 151C or 251C. The RTU will automatically default to an appropriate configuration for this type of relay.

9.3.1.8 251-2

Select 251-2 for protocol type if the relay is a SEL 251-2. The RTU will automatically default to an appropriate configuration for this type of relay.

9.3.1.9 279H

Select 279H for protocol type if the relay is a SEL 279H. The RTU will automatically default to an appropriate configuration for this type of relay.

9.3.1.10 NO DATA

The "NO DATA" protocol type is used to allow only the tunnel function to the relay. When in this mode, the RTU will log on to the relay and send "ID" commands to verify the state of the communications link and update the communications status point associated with the relay.

Relay Type

Enter the type of relay. The default is Unknown. If the protocol type is SEL Auto, this field will be grayed out and non editable. AUTO_CONFIG will pick up the type (FID) from the SEL device during auto configuration.

Level 1 Password

Enter the Level 1 Password for the connected SEL device. This is required for the auto-configuration function. The default is OTTER.

Check ID on Restart

Note: This field doesn't apply for relays that can't be auto configured.

9.3.1.11 None

No check that the relay is the same as that autoconfigured.

9.3.1.12 Full

Check the entire ID string to see that the relay connected is the same model and firmware version as that auto configured.

9.3.1.13 Relay Type Only

Check only that the relay is the same model as that auto configured.

Include Targets

Some 100- and 200- series relays do not return targets. For them, Include Targets must be set to No so the RTU will send the correct fast meter command.

Get SER Data (No, Yes)

Select Yes or No to SER Data. The default is No. (Note: SER means Sequence of Events Recorder.)

Check SER Interval (10 – 86400 sec)

Enter the time in seconds to check for SER data. The default is every 10 sec.

SER Records to Read (1-50)

Enter the number of SER records to read. The default is 5.

Baud Rate (300 - 19200)

From the drop-down menu, select the baud rate. The default setting is 9600.

Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is None.

Data Bits (5,6,7,8)

Enter the data bits for the associated channel. The default setting is 8.

Stop Bits (0,1,2)

Enter the stop bits for the associated channel. The default setting is 1.

CTS Delay (0 to 250ms)

Enter the clear-to-send delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. Valid entries are in the range of 0-250 msec. The default setting is 20.

Rx Timeout (0 - 60,000 ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 500.

Delay for First Byte (0 to 60,000ms)

Enter the delay time for the associated channel. This is the time allowed for a Slave Device to begin its response before the RTU assumes it is not going to reply and moves on to the next device. This parameter is typically set long because of delays in IED response. Valid entries are in the range of 0-60,000 ms. The default setting is 50 ms.

Note: This timer must be <u>less</u> than Rx Timeout (above).

Interbyte time (0 - 30000 ms)

Enter the interbyte time for the associated channel. The interbyte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 20 msec.

Please note: No configuration changes take effect until the RTU is reset.

Retries Before Failing Points(0 - 10)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

Hardware CTS (No, Yes)

Click the radio button for Yes if you want the Hardware Clear-To-Send option selected. When this option is selected, the IEDs will not be polled unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where

the RTU starts its CTS timer, the RTS signal is asserted to the modem. If no hardware CTS signal is present, the port aborts the transmission and tries again. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. The default setting is No.

Hardware DCD (No, Yes)

Click the radio button for Yes if you want the Hardware DCD selected. When this option is selected, the channel communications driver will accept requested message data bytes only if the carrier is detected by the modem. If the carrier is not detected, the data bytes are discarded. The default setting is No.

Poll Time(50 – 10000)

Enter the time (in milliseconds) that the RTU will take to poll this IED. The default is 100.

Accumulator Units(Kilo, Mega)

Select the units for the accumulators. The default is Kilo.

Invert Trip/Close (No.Yes)

Allows the logic of Trip/Close to be inverted.

9.3.2 Event Setup

Get Event Data (HIS) (No/Yes)

Extract event summary data (event type, location, etc.) from the event history command (HIS or CHIS). When set to Yes, Analog and Status points are created at the end of the ANA's and STS's to bring back events as shown below. Please see "Note" below illustration.

ort#:2 D#:1 << Prev	ious Page 3 of 4	Goto		Port Name : Port 3 Name : FEEDER Next >>
Pnt	Name	EGU Min	EGU Max	Add Points to Database
33	VBAT	0	300	• Yes C No
34	HIS-MONTH	0	100	• Yes C No
35	HIS-DAY	0	100	• Yes C No
36	HIS-YEAR	0	100	• Yes C No
37	HIS-HOUR	0	100	• Yes C No
38	HIS-MIN	0	100	• Yes C No
39	HIS-SEC	0	100	• Yes • No
40	HIS-MSEC	0	100	• Yes C No
41	HIS-EVENT	0	1000	• Yes C No
42	HIS-LOCATION	0	100	• Yes C No
43	HIS-CURR	0	100	• Yes C No
44	HIS-FREQ	55	65	• Yes C No
45	HIS-GROUP	0	100	• Yes C No
46	HIS-SHOT	0	100	• Yes C No
47	EVE-FREQ	55	65	• Yes C No
48	EVE-SAM/CYC_A	0	100	

Event Analog Points

Event Status Points

	SEL Status Configurat	tion			
Port#:3		Name : SEL_New Name : FEEDER 1			
IED# 1	Page 1 of 6 GoTo	Go Next >>			
Point	Name	Add Points to Database 🔊			
0	COMM_STS				
1	NewEvent	⊙Yes ○No			
2	EventTarget1	⊙Yes ○No			
3	EventTarget2	⊙Yes ○No			
4	EventTarget3	⊙Yes ○No			
5	EventTarget4	⊙Yes ○No			
6	EventTarget5	⊙Yes ○No			
7	EventTarget6	⊙Yes ○No			
8	EventTarget7	⊙Yes ○No			
9	EventTarget8	⊙Yes ○No			
10	EventTarget9	⊙Yes ○No			
11	EventTarget10	⊙Yes ○No			
12	EventTarget11	⊙Yes ○No			
13	EventTarget12	⊙Yes ○No			
14	EventTarget13	⊙Yes ○No			
15	EventTarget14	⊙Yes ○No			
	Cancel Submit				

Port # : 3 ED # : 1 << Previ	ous Page 3 of 3	GoTo		Name : SEL_Nev Name : FEEDER
Pnt	Name	EGU Min	EGU Max	Add Points to Database
33	EventCurrent	0	1000	⊙Yes ○No
34	EventFreq	0	100	⊙Yes ○No
35	EventGroup	0	16	⊙Yes ○No
36	EventShot	0	16	⊙Yes ○No
37	FaultData1	0	1000	⊙Yes ○No
38	FaultData2	0	1000	⊙Yes ○No
39	FaultData3	0	1000	⊙Yes ○No
40	FaultData4	0	1000	⊙Yes ○No
41	FaultData5	0	1000	⊙Yes ○No
42	FaultData6	0	1000	⊙Yes ○No
43	FaultData7	0	1000	⊙Yes ○No
44	FaultData8	0	1000	⊙Yes ○No
Cancel Submit				

	SEL Status Configuration				
Port#:3 IED#:1	· · · · · · · · · · · · · · · · · · ·				
	<pre>revious Page 2 of 6 GoTo</pre> Go				
Point	Name	Add Points to Database 🔊			
16	EventTarget15	⊙Yes ○No			
17	EventTarget16	⊙Yes ○No			
18	TARG0_7	OYes ⊙No			
19	TARG0_6	○Yes ⊙No			
20	TARG0_5	○Yes ⊙No			
21	TARG0_4	○Yes ⊙No			
22	TARG0_3	○Yes ⊙No			
23	TARG0_2	○Yes ⊙No			
24	TARG0_1	○Yes ⊙No			
25	TARG0_0	○Yes ⊙No			
26	TARG1_7	○Yes ⊙No			
27	TARG1_6	○Yes ⊙No			
28	TARG1_5	○Yes ⊙No			
29	TARG1_4	○Yes ⊙No			
30	TARG1_3	○Yes ⊙No			
31	TARG1_2	○Yes ⊙No			
	Cancel Submit				

Note 1: Points taken from the Event History are prefixed with "HIS-" to distinguish them from similar data from other sources. Similarly, points taken from the Event Summary are prefixed with "EVE-". These names may be edited if desired.

Note 2: You do not need to set "Get SER Data" to Yes for "Get Event Data (HIS)" to work properly.

Event/SER Buffer Size (8 – 128 kBytes)

Enter the kByte size to be used for Events. The default is 64 kBytes. (Note: SER means Sequence of Events Recorder.)

Check Events Interval (10 - 3600 sec)

Enter the interval in seconds in which to check for Events. The default is 300 sec.

Cycle Time After Event (0 - 60,000)

Enter the time in seconds for the RTU to listen for more Events after detecting a new one. The default is 15 seconds.

Ignore Events Older Than (-1 - 744 hours)

Enter the number of hours. This prevents old events from being reported again on restart. Enter -1 if all old event reports are desired. The default is 2 hours.

Time to Ignore Events After Event (0 - 60000 sec)

Enter the time in seconds to ignore events after the event of interest. The default is 15 sec.

Reset Location after ignore times out

If the fault location received from the relay needs to be set to zero after the "Time to Ignore Events After Event" (the initial event triggering the timer) expires, check this box. The time that the value is reset is approximate but will always be after the timer expires. The time that the location analog point is set to zero is affected by the communications timing with the relay. This function is enabled only if the "Time to Ignore Events After Event" is non zero.

Get Fault Data (EVE) (No/Yes)

Read the compressed event data (CEV) and extract data from the event summary line (per-phase currents, etc.).

Note: The CEV command requires about one minute acquiring data, so use of this feature slows down data acquisition.

Samples per Cycle (4/16)

Choose either 4 samples per cycle or 16 samples per cycle.

Events to Store (0-30)

Enter the number of events you wish to store in Flash memory. The default is 10.

Xmit Events via FMS (No/Yes)

"Yes" allows Events to be returned through FMS. If the Feeder Monitor System (FMS) is configured either on a serial port or an Ethernet socket, the Feeder Monitor Master software can be used to upload event records to the PC on which the Feeder Monitor Master is running. This can be done either as a text copy of the event in the form returned by the compressed event (CEV) command to the relay, or in the form used by the FMS system. In FMS format, only the wave shape records of the three-phase currents and voltages are returned. SEL offers the option of getting four samples per cycle for 15 cycles or 16 samples per cycle for 16 cycles, as selected by the "Samples per Cycle" field above.

FMS Feeder No,

If "Yes" is selected to "Xmit Events via FMS", then you must select the appropriate Feeder Number to be used by the Feeder Monitor Master software. Note that if there are ACI boards configured for the RTU as well as SEL relays, the first feeder numbers are reserved for the ACI boards, and the "FMS Feeder No." should be assigned to the next available records.

Event Data Format

If the "Xmit Events via FMS" option is selected, these options determine the format of the data to be returned. If SEL format is selected, the Feeder Monitor Master will store events in compressed event (CEV) format in a directory specified in the Feeder Monitor Master setup. If the FMS format is selected, the currents and voltages will be extracted from the event report as FMS wave shape records and sent to the Feeder Monitor Master in a format similar to that used for ACI data

Export

The Export function copies everything in the SEL configuration except the Name to an xml file. The Exp button exports a configuration in xml format from the SEL to the RTU as a template. The templates are protocol/IED specific. This template is stored in the RTU. When you choose Up/Download tab and click on "Get" (get files from RTU), you will transfer these templates to your PC.

Choose from one of the existing file types (if present), or create a new xml file type. Click Save after your selection.

Save Template		Х
Replace Existing		~
	(OR)	
Create New		
	Sa	ve

Import

The Import button imports a configuration in xml format as shown below. Choose from one of the existing file types (if present) shown in the pull-down menu. If a new file type has been created under Export, that file type will also show up in the pull-down menu. When you set up another RTU, choose the Up/Download tab and click "Send" (send files to RTU), the template you save in the first RTU will be downloaded to the second RTU. Click Get after your selection below.

Load Template	X
Load Template	~
	Get

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

9.4 **Point Operations**

From the Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear.

SEL IED C	onfiguration		
Port # 4 IED # : 1	Port Na IED Name	me : Port 4 : FEEDER 1	Number field is <u>not</u> editable.
Туре	Number	Edit	
Analogs Inputs	54	Edit	
Status Inputs	351	Edit	
Accumulators	16	Edit	
Control Outputs	9	Edit	
		Back	

Figure 9-4 SEL IED Configuration

Type

The type of point.

Number (This field is not editable)

Edit

Click the Edit button to edit points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

9.4.1 SEL Analog Input Configuration

From the SEL IED Configuration screen, click on Edit for Analogs. A screen similar to Figure 2-13 will appear.

	SEL Analog Inputs Configuration				
Port # : 4 Port Name : Port IED # : 1 IED Name : STATION /					
IED # : I	Next >>				
Pnt	Page 1 of 3 Name	GoTo EGU Min	EGU Max	Add Points to Database	
1	A_PH_AMPS	-1000	1000	⊙Yes ○No	
2	B_PH_AMPS	-1000	1000	No	
З	C_PH_AMPS	-1000	1000 Click on Change A	Header to	
4	A_PH_VOLTS	0	120 Change A	I X o	
5	B_PH_VOLTS	0	120 Value	Set	
6	C_PH_VOLTS	0	120 and/or ch	ange o	
7	N_AMPS	-1000	1000	⊙Yes ONo	
8	A_PH_WATTS	-30000	30000	⊙Yes ○No	
9	B_PH_WATTS	-30000	30000	⊙Yes ○No	
10	C_PH_WATTS	-30000	30000	⊙Yes ○No	
11	TOTAL_WATTS	-90000	90000	⊙Yes ○No	
12	A_PH_VAR	-30000	30000	⊙Yes ○No	
13	B_PH_VAR	-30000	30000	⊙Yes ○No	
14	C_PH_VAR	-30000	30000	⊙Yes ○No	
15	TOTAL_VAR	-90000	90000	⊙Yes ○No	
16	A_PH_VA	-30000	30000	⊙Yes ○No	
Cancel Submit					

Figure 9-5 SEL Analog Input Configuration

Pnt

Protocol logical point number. This number cannot be changed.

Name

Enter the name of the point (or accept the default name).

EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Add Points to Database

Click "No" if you do not want a point added to the database. The default is Yes.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

9.4.2 SEL Status Configuration

From the SEL IED Configuration screen, click on Edit for Status Inputs. A screen similar to Figure 8-5 will appear.

	SEL Status Configura	ation	
Port # : 4 IED # : 1		Port Name : Port 4 Iame : STATION A	
10 * . 1	Page 1 of 28 GoTo	GO Next >>	
Point	Name	Add Points to Database 🔊	Change All X
0	COMM_STS]	Current Page
1	STSET	⊙Yes ○No	Value . 💿 Yes 🔿 No Set
2	TLED11	OYes ⊙No	Current Page
3	TLED12	⊙Yes ○No	All Pages
4	TLED13	⊙Yes ○No	
5	TLED14	OYes ⊙No	
6	TLED15	⊙Yes ○No	
7	TLED16	⊙Yes ○No	
8	TLED17	⊙Yes ○No	
9	TLED18	⊙Yes ○No	
10	TLED19	OYes ⊙No	
11	TLED20	⊙Yes ○No	
12	TLED21	⊙Yes ○No	
13	TLED22	⊙Yes ○No	
14	TLED23	⊙Yes ○No	
15	TLED24	⊙Yes ONo	
	Ca	ncel Submit	

Figure 9-6 SEL Status Configuration

Point

Protocol logical point number. This number cannot be changed.

Name

Enter the name of the point (or accept the default name).

Add Points to Database

Click "Yes" if you want a point added to the database. By clicking on the header, all points displayed on this page may be turned ON or OFF with a single radio-button click. The default is No.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in

211

the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

9.4.3 SEL Accumulators Configuration

From the SEL IED Configuration screen, click on Edit for Accumulators Inputs. A screen similar to Figure 9-7 will appear.

SEL Accumulators Configuration				
Port # : 4		ort Name : Port 4		
IED # : 1	Name	me : STATION A Add Points to		
Point	Name	Database		
1	PH_A_WH	⊙Yes ⊖No		
2	PH_A_WH-	⊙Yes ⊖No		
З	PH_A_VARH	⊙Yes ⊖No		
4	PH_A_VARH-	⊙Yes ⊖No		
5	PH_B_WH	⊙Yes ⊖No		
6	PH_B_WH-	⊙Yes ⊖No		
7	PH_B_VARH	⊙Yes ⊖No		
8	PH_B_VARH-	⊙Yes ⊖No		
9	PH_C_WH	⊙Yes ⊖No		
10	PH_C_WH-	⊙Yes ⊖No		
11	PH_C_VARH	⊙Yes ⊖No		
12	PH_C_VARH-	⊙Yes ⊖No		
13	TOT_WH	⊙Yes ⊖No		
14	TOT_WH-	⊙Yes ⊖No		
15	TOT_VARH	⊙Yes ⊖No		
16	TOT_VARH-	⊙Yes ○No		
Cancel Submit				

Point

Protocol logical point number. This number cannot be changed.

Name

Enter the name of the point (or accept the default name).

Add Points to Database

Click "No" if you do not want a point added to the database. The default is Yes.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to

return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

9.4.4 SEL Control Outputs Configuration

From the SEL IED Configuration screen, click on Edit for Control Outputs. A screen similar to Figure 9-8 will appear.

SEL Control Outputs Configuration				
Port#:4 IED #:1				
Point	Name	Туре	Add Points to Database	
1	BREAKER_1		⊙Yes ○No	
2	REMBIT_1	Latched 💌	⊙Yes ○No	
3	REMBIT_2	Latched 💌	⊙Yes ○No	
4	REMBIT_3	Latched 💌	⊙Yes ○No	
5	REMBIT_4	Latched 💌	⊙Yes ○No	
6	REMBIT_5	Latched 💌	⊙Yes ○No	
7	REMBIT_6	Latched 💌	⊙Yes ○No	
8	REMBIT_7	Latched 💌	⊙Yes ○No	
9	REMBIT_8	Latched 💌	💿 Yes 🔘 No	
Cancel Submit				

Figure	9-8	SEL	Control	Ou	tputs	Configuration	on
SEL	Cor	trol	Outpu	te	Con	figuration	2

Point

Protocol logical point number. This number cannot be changed.

Name

Enter the name of the point (or accept the default name).

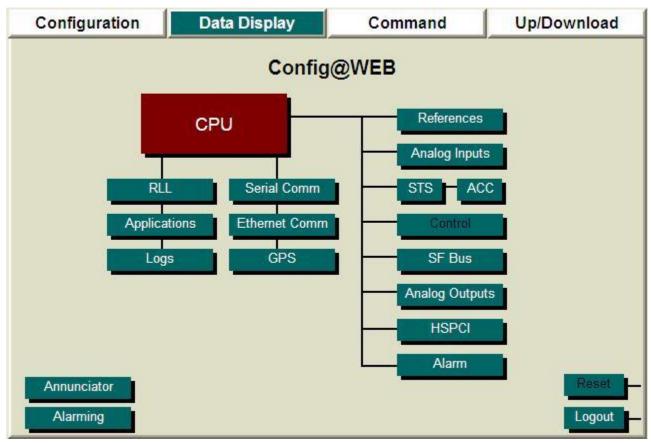
Type

From the drop-down menu, select either Latched or Pulsed according to the SEL documentation for that point. If the point is Trip/Close only, such as Breaker Bits, a drop-down menu is not shown.

Add Points to Database

Click "No" if you do not want a point added to the database. The default is Yes.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

9.5 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 9-9 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Display Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	К	K	Port 1	DNPR	View	Port Data
Port #2	К	K	Port 2	DNPM	View	Port Data
Port #3	К	K	Port 3	SEL	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port #5	К	K	Port 5	None	View	Port Data
Port #6	К	K	Port 6	None	View	Port Data
Port #7	К	К	Port 7	None	View	Port Data
Port #8	К	К	Port 8	None	View	Port Data
Port #9	К	К	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port #11	К	К	Port 11	None	View	Port Data
Port #12	К	ĸ	Port 12	None	View	Port Data
Communication Associations Config Back						

Port Number

Physical Port number of the RTU.

RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

9.5.1.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

9.5.1.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

9.5.1.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

Name

The port name given during configuration or default name accepted.

Protocol

The configured protocol for this port.

Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

9.5.2 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

SEL Communication Counters Display

Port # : 2		Port Name : Port 2		
Point	Counter Name	Counts		
1	Messages Sent	467		
2	Messages Received	463		
3	RX Timeouts	0		
4	Security Errors	0		
5	Framing Errors	26		
6	Invalid Address	0		
7	Invalid Function	0		
8	Invalid Data Type	0		
9	Too Many Bytes	0		
10	Too Few Bytes	0		
11	Hardware CTS Errors	0		
12	B4 Timer Violations	0		
13	IB Timer Violations	0		
14	Overrun Errors	0		
15	Parity Errors	0		
16	Hardware DCD Errors	0		
Data Trap				
		Back		

Point

A logical point number for reference only.

Counter Name

The following counters are monitored:

9.5.2.1 Messages Sent

This indicates the cumulative number of valid sent messages since the last reset or power-up.

9.5.2.2 Messages Received

This indicates the cumulative number of valid received messages since the last reset or power-up.

9.5.2.3 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

9.5.2.4 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

9.5.2.5 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

9.5.2.6 Invalid Address

This indicates the cumulative number of messages received for which the system global group address was used by the RTU address was neither the broadcast address nor the RTU ID.

9.5.2.7 Invalid Function

This field is not used.

9.5.2.8 Invalid Data Type

This field is not used.

9.5.2.9 Too Many Bytes

This field is not used.

9.5.2.10 Too Few Bytes

This field is not used.

9.5.2.11 Hardware CTS Errors

This indicates the cumulative number of CTS errors since the last reset or power-up.

9.5.2.12 B4 Timer Violations

This indicates the cumulative number of B4 Timer Violations. This count can be affected by the setting of the Delay for first byte in configuration.

9.5.2.13 IB Timer Errors

This indicates the cumulative number of IB Timer Errors. This count can be affected by the setting of the Interbyte Time in configuration.

9.5.2.14 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

9.5.2.15 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

9.5.2.16 Hardware DCD Errors

This indicates the cumulative number of DCD errors since the last reset or power-up.

Counts

The counts for each type of Counter.

Data Trap

Please see the Config@WEB Secure Software Users Guide.

Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

9.5.3 SEL IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

SELI	ED Display			
Port # : 2 Port Name : Port 2 IED # : 1 IED Name : SEL-351-R114-VM-Z003003-D20010629				
Туре	Number	View		
Analog Inputs	58	View		
Status Inputs	18	View		
Accumulators	16	View		
Control Outputs	1			
Event Records		View		
		Back		

Figure 9-12 SEL IED Display

Type

The type of point.

Number

The number of points of each type configured for this logical RTU.

View

Click the View button to view points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

9.5.3.1

5.3.1 Analog Inputs From the SEL IED Display screen, click View for Analog Inputs. Notice that the three screen shots shown below include the Event data, which follows other ANA points.

Figure 9-13 SEL Analog Inputs Display

	8 >					
	SEL Analog Ir	nputs	Display			
Port # : 4			Po	rt Name : Port 4		
IED #:1		IED Name : FEEDER 1				
< <prev< th=""><th>Page2 of 4</th><th>Go To</th><th>GO</th><th>Next>≻</th></prev<>	Page2 of 4	Go To	GO	Next>≻		
Point	Point Name		Point Status	Point Value		
17	B_PH_VA		F	-30000.000		
18	C_PH_VA		F	-30000.000		
19	TOTAL_VA		F	-90000.000		
20	A_PH_PF		F	-1.000		
21	B_PH_PF		F	-1.000		
22	C_PH_PF		F	-1.000		
23	TOTAL_PF		F	-1.000		
24	EventMonth		F	0.000		
25	EventDay		F	0.000		
26	EventYear		F	0.000		
27	EventHour		F	0.000		
28	EventMinute		F	0.000		
29	EventSecond		F 0.00			
30	EventMsec		F 0.000			
31	EventLocation		F 0.000			
32	EvenţType		F 0.000			
				Back		
	See the Note und	ler Poin	t Value			
	Figheader.					
	SEL Analog Ir	nputs	Display			
Port # : 4			Po	rt Name : Port 4		
IED#:1			IED N	lame : FEEDER 1		
< <prev< td=""><td>Page3 of 4</td><td>Go To</td><td>GO</td><td>Next>></td></prev<>	Page3 of 4	Go To	GO	Next>>		
Point	Point Name		Point Status	Point Value		
33	EventCurrent		F	0.000		
34	EventFreq		F 0.0			
35	EventGroup		F 0.00			
36	EventShot		F	0.000		
37	FaultData1		F	0.000		
20	FaultData1		F 0.00			

34	EventFreq	F	0.000
35	EventGroup	F	0.000
36	EventShot	F	0.000
37	FaultData1	F	0.000
38	FaultData2	F	0.000
39	FaultData3	F	0.000
40	FaultData4	F	0.000
41	FaultData5	F	0.000
42	FaultData6	F	0.000
43	IA	F	-100.000
44	IB	F	-100.000
45	IC	F	-100.000
46	IN	F	-100.000
47	VA	F	-100.000
48	VB	F	-100.000
			Back

Figure 9-15 SEL Analog Inputs Display

	SEL Analog Inputs	Display	
Port # : 4 IED # : 1			rt Name : Port 4 ame : FEEDER 1
< <prev< th=""><th>Page4 of 4 Go To</th><th>GO</th><th></th></prev<>	Page4 of 4 Go To	GO	
Point	Point Name	Point Status	Point Value
49	VC	F	-100.000
50	VS	F	-100.000
51	FREQ	F	55.000
52	VBAT	F	0.000
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	
-	-	-	
-	-	-	
-	-	-	-
-	-	-	
-	-	-	
-	•	-	
-		-	Back

Point

The logical number of the point.

Point Name

The point name. Only those points that were set to Yes under Add Points to Database will appear here.

Point State

Please see the Config@WEB Secure Software Users Guide.

Point Value

This is the engineering unit (EGU) value being calculated by the RTU based on the settings of the EGU min, EGU max, and the current binary value being returned by the meter.

Note: The Point Value of the Point Name "EventType" is detailed in Table 9-2, where the Point Value corresponds to the Code #. As an example, if the Point Value for EventType is "5", then the Event is "ER2", which means, "SELogic control of equation setting ER2". Notice that there is a Code # 0, which means, "Unknown event type".

Note: The SEL protocol supports the Tunnel Function and Event checking simultaneously.

Table 9-2 SEL Event Type Point Value

Event	Code #	Description	
	0	Unknown event type	
TRIG	1	Execution of TRI serial port command	
PULSE	2	Execution of PUL serial port command	
ER	3	SELogic control of equation setting ER	
ER1	4	SELogic control of equation setting ER1	
ER2	5	SELogic control of equation setting ER2	
CLS3	6	Assertion of Relay Word bit CLS3	
CLS2	7	Assertion of Relay Word bit CLS2	
CLS1	8	Assertion of Relay Word bit CLS1	
TRIP4	9	Assertion of Relay Word bit TRIP4	
TRIP3	10	Assertion of Relay Word bit TRIP3	
TRIP2	11	Assertion of Relay Word bit TRIP2	
TRIP1	12	Assertion of Relay Word bit TRIP	
TRIP	13	Assertion of Relay Word bit TRIP2	
TRP1	14	TRP1 tripping element assertion	
TRP2	15	TRP2 tripping element assertion	
TRP3	16	TRP3 tripping element assertion	
ABG	17	Two phase-to-ground fault	
ABG T	18	Two phase-to-ground fault with trip	
ACG	19	Two phase-to-ground fault	
ACG T	20	Two phase-to-ground fault with trip	
CAG	21	Two phase-to-ground fault	
CAG T	22	Two phase-to-ground fault with trip	
BCG	23	Two phase-to-ground fault	
BCG T	24	Two phase-to-ground fault with trip	
AB	25	Phase-to-phase fault	
AB T	26	Phase-to-phase fault with trip	
AC	27	Phase-to-phase fault	
AC T	28	Phase-to-phase fault with trip	
CA	29	Phase-to-phase fault	
CA T	30	Phase-to-phase fault with trip	
ABC	31	Three phase fault	
ABC T	32	Three phase fault with trip	
AG	33	Single phase-to-ground fault	
AG T	34	Single phase-to-ground fault with trip	
BG	35	Single phase-to-ground fault	
BG T	36	Single phase-to-ground fault with trip	
CG	37	Single phase-to-ground fault	
CG T	38	Single phase-to-ground fault with trip	
SBFTR	39	Rising edge of Relay Word Bit SBFTR, the OR combination of a breaker failure trip	
87BTR	40	Rising edge of Relay Word Bit 87BTR, the OR combination of a busbar protection trip	
A	41	Single Phase-to-ground fault (Peterson Coil and ungrounded/high-impedance grounded	
AT	42	Single Phase-to-ground fault (Peterson Coil and ungrounded/high-impedance grounded	
B	43	Single Phase-to-ground fault (Peterson Coil and ungrounded/high-impedance grounded	
BT	44	Single Phase-to-ground fault (Peterson Coil and ungrounded/high-impedance grounded	
С	45	Single Phase-to-ground fault (Peterson Coil and ungrounded/high-impedance grounded	
СТ	46	Single Phase-to-ground fault (Peterson Coil and ungrounded/high-impedance grounded	
MER	47	Element assertion in the MER equation assertion	
EXT	48	Report triggered by assertion of the EXT designated input	
EXTC	49	Report triggered by the TRIGGER command	
		Events Amonds T if TDID accounted (ADC T as an annuals)	
		Events Appends T if TRIP asserted (ABG T as an example)	

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to

return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

9.5.3.2 Status Inputs

From the SEL IED Display screen, click View for Status Inputs. Notice that the two screen shots below contains Event Data.

	SEL Status Input	s Display		
Port # : 4 IED # : 1		и То Go	Port Name : F ED Name : FEED Ne	
Point	Point Name	Point Status	Point State	•
0	COMM_STS		CLOSE	•
1	NewEvent	F	OPEN	•
2	EventTarget1	F	OPEN	•
3	EventTarget2	F	OPEN	•
4	EventTarget3	F	OPEN	•
5	EventTarget4	F	OPEN	•
6	EventTarget5	F	OPEN	•
7	EventTarget6	F	OPEN	•
8	EventTarget7	F	OPEN	•
9	EventTarget8	F	OPEN	•
10	EventTarget9	F	OPEN	•
11	EventTarget10	F	OPEN	•
12	EventTarget11	F	OPEN	•
13	EventTarget12	F	OPEN	•
14	EventTarget13	F	OPEN	•
15	EventTarget14	F	OPEN	•
			Ba	ck

Figure 9-17 SEL Digital Inputs Display

	SEL Status Input	s Display		
Port # : 4 IED # : 1 < <prev< td=""><td></td><td></td><td>Port Name : Po ED Name : FEED</td><td></td></prev<>			Port Name : Po ED Name : FEED	
		To GO		
Point	Point Name	Point Status	Point State	•
16	EventTarget15	F	OPEN	•
17	EventTarget16	F	OPEN	•
18	STSET	F	OPEN	•
19	EN	F	OPEN	•
20	TRIP	F	OPEN	•
21	INST	F	OPEN	•
22	COMM	F	OPEN	•
23	SOTF	F	OPEN	•
24	PDEM	F	OPEN	•
25	NDEM	F	OPEN	•
26	GDEM	F	OPEN	•
27	QDEM	F	OPEN	•
-	-	-	-	-
-	-	-	-	-
-	-	-	-	·
-	-	-		<u> </u>
			Bac	k 🖉

Note: The COMM_STS point is automatically assigned to show whether the comm. channel is working or not. A CLOSED (red) point indicates that the comm. channel is failed. An OPEN (green) point indicates that the comm. channel is operational.

Note: The EventTarget points are shown only if event retrieval is enabled and these points are selected to be added to the database. The NewEvent point is toggled when a new event is detected. The state of this point is not significant, but a change of state indicates that new event data points are available.

Point

The logical number of the point.

Point Name

The point name.

Point State

Please see the Config@WEB Secure Software Users Guide.

Point State

Indicates that point is either OPEN or CLOSED.

•

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

223

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

9.5.3.3 Accumulators

Accumulators are available only for those relay types that provide the analogs necessary to compute instantaneous power. They represent an integration of power into kilowatt hours or megawatt hours, according to the Accumulator Units field on Figure 9-2 above.

From the SEL IED Display screen, click View, then click Accumulators. Reference the screen shown in Figure 5-12.

	SEL Accumulator Inputs Display	1	
Port # : 3 IED # : 1		IED N	Port Name : Port 3 Jame : SEL_RELAY_1
	Page1 of 1 Go To G	0	
Point	Point Name	Point Status	Count
1	PH_A_WH+	F	0
2	PH_A_WH-	F	0
3	PH_A_VARH+	F	0
4	PH_A_VARH-	F	0
5	PH_B_WH+	F	0
1 2 3 4 5 6 7	PH_B_WH-	F	0
7	PH_B_VARH+	F	0
8 9	PH_B_VARH-	F	0
9	PH_C_WH+	F	0
10	PH_C_WH-	F	0
11	PH_C_VARH+	F	0
12	PH_C_VARH-	F	0
13	TOT_WH+	F	0
14	TOT_WH-	F	0
15	TOT_VARH+	F	0
16	TOT_VARH-	F	0
			Back

Figure 9-18	SEL A	Accumulators	Inputs	Display
I iguic J-10	SLL I	accumulators	mputs	Display

Point

Protocol logical point number.

Point Name

The point name. Only those points that were set to Yes under Add Points to Database will appear here.

Point State

Please see the Config@WEB Secure Software Users Guide.

Count

The counts as calculated.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

9.5.3.4 Event Records Display and Retrieval

If the option to capture and save full-format SEL events (CEV option) has been selected during configuration, clicking the View button for Event records will bring up a display giving the date, time and type of the most recent events captured.

Note: Be patient. Retrieving Event files takes a long time.

		SEL Ever	nt Headers Di	splay	
Port # : IED # : :			IED Name : FE		Name : Port 2
IED #	1	Page1 of 1		GO	D-STATION
Index	ID	Date	Time	Туре	Download
1	2	03/08/2007	23:41:42.928	PULSE	Get
2	3	01/01/3980	04:07:48.847	ER	Get
3	4	01/01/3980	23:50:53.371	ER	Get
4	5	01/02/3980	00:43:57.930	ER	Get
5	6	01/02/3980	00:44:14.372	TRIP	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
-	-	-	-	-	Get
					Back

Figure 9-19 SEL Event Headers Display

S2200-AAA-00004

Clicking the Get button for a given event record presents the option to save the event to a file or to view it on the screen.

Figure 9-20 Records Display

Image: Solution of the second secon	■ SEL_0201[1].eve - WordPad
<pre>PFID*, "0143" "FID*SEL-351-R114-VH-2003003-D20010629", "08C1" "FID*SEL-351-R114-VH-2003003-D20010629", "08C1" "FID*SEL-351-R114-VH-2003003-D20010629", "08C1" "FID*SEL-351-R114-VH-2003003-D20010629", "08C1" "FID*T*, "TE*, "HOUP*, "HUN*, "SEC", "HSEC", "SEC", "GENET", "LOCATION", "SHOT", "TARGETS", "IA", "IE", "IC", "IN", "IG", "312", "1AX 60.00,16,16,16, "TEIP", \$</pre>	File Edit View Insert Format Help
"FID=SEL-351-FIL4-VH-2003003-b2001622", "06C1" "WKNTH", "DAY", YEAR", "HOUR", "HIN", "SEC", "DACM" 9,00,2006, 14,38,12,112, '0461" "FRECP, "SAM/CYC_A", "SAM/CYC_D", "WUH_OF_CYC", "EVENT", "LOCATION", "SHOT", "TARGETS", "IA", "IE", "IC", "IN", "IG", "312", "IA" 00.00, 16, 16, ("TELP", '\$\$\$\$\$\$\$2,, 1,.0,.0, 1,.0, "0885" "IA", "IB", "IC", "IN", "IG", "VALKU", "VBLKU", "VUE(V)", "VSL(V)", "VDC", "FFEQ", "TAIG", "SOAI 50H 50C1 50A2 50B2 50C2 50J 1,0,0,1,-1,-0,0,-0,0,0,0,-0,0,-5,66.00,0, "0000000452490000000000000000000000000000	
<pre>"MORTP", "DAY", "YEAR", "BORT, "HIN", "SEC", "HSEC", "OACA" 9,30,2006,14,38,12,112, "0461" "FREQ", "SAM/CYC A', "SAM/CYC D', "NUHLOF CYC", "EVENT", "LOCATION", "SHOT", "TARGETS", "IA", "IB", "IC", "IN", "IG", "S12", "IA", 60.00,16,16,16, "TRIF", \$\$\$\$\$\$\$,2,,,11,16,0,10, "0685" "IA", "IB", "IC", "IN", "IG", "WIKUN, "WS (KV)", "VS (KV)", "VDC", "FREQ", "TRIG", "SOAI SOBI SOCI SOAZ SOBZ SOCZ SOJ -1,0,0,1,-1,-0,0,-0,0,0,0,-0,0,56,60.00, , "000000492490000000000000000000000000000</pre>	"FID", "0143"
9, 30, 2008, 14, 38, 12, 112, "0461" "FREQ", "SMI/CC C, "SMI/CC C, "SMI/CC C, "SWINT, "LOCATION", "SHOT", "TARGETS", "IA", "IB", "IC", "IN", "IG", "312", "IA" (0.00, 16, 16, 16, 16, "TIRIP", \$\$\$\$\$\$\$\$, 2, 1, 1, 0, 0, 1, 0, "0885" "IA", "IB", "IC", "IN", "IO", "NI, "UC, "JNV [KV]", "VC [KV]", "VS (KV]", "VDC", "FREQ", "TRIG", "SOAI SOBI SOCI SOAZ SOBZ SOCZ SOJ 1, 0, 0, 1, -1, -0, 0, 0, 0, 0, -0, 0, -56, 60, 00, "000000492490000000000000000000000000000	"FID=SEL-351-R114-VM-Z003003-D20010629", "08C1"
<pre>"FREq", "s.M/CCC_A", "S.M/CCC_D", "SUM OF_CCC", "FUENT", "LOCATION", "SHOT", "TARGETS", "IA", "IB", "IC", "IN", "IG", "312", "IA' 60.00, 16, 16, 16, "TRIP", \$\$\$\$\$, 1, 1, 0, 0, 1, 0, "0885" "IA", IB", "IC", "IN", 'IG", "S.M(KY)", "VB(KY)", "VC(KV)", "VS(KY)", "VDC", "FREQ", "TRIG", "SOAI SOBI SOCI SOA2 SOE2 SOI 1, 0, 0, 1, -1, -0, -0, 0, 0, -0, 0, -0, 0, 4, 60.00, , "000000492490000000000000000000000000000</pre>	
60.00,16,16,16,17TRTP*,\$\$\$\$\$\$,2,.,1,1,0,0,0085" "TA", TB", "TC", "TN", "IG", "TA", "IG", "YA (KV)", "VG (KV)", "VC (KV)", "VDC", "FREQ", "TRIG", "SOA1 SOB1 SOC1 SOA2 SOB2 SOC2 SOJ 1,0,0,1,-1,-0,0,-0,0,0,0,-0,0,-55,60.00, "000000492490000000000000000000000000000	
<pre>"T.M., "TB", "T.G., "IN", "T.G., "W.KW,", "W.KW,", "W.KW,", "W.S.KV,", "W.S.KV,", "F.REQ", "TRIG", "FSIG", "SOAI 5081 5061 50A2 5082 5022 501 -1,0,0,1,-1,-0,0,-0,0,0,0,-0,0,56,60.00, "000000492490000000000000000000000000000</pre>	
-1,1,0,1,-1,-0,0,-0,0,0,0,-0,0,4,6,0,0, "000004924900000000000000000000000000000	
-2,0,1,1,-1,0,0,-0,0,0,0,-0,0,73,60,00, ,"000000492490000000000000000000000000000	
-2,0,1,1,-2,-0.0,-0.0,0,-0.0,124,60.00, "000000492490000000000000000000000000000	
-1,1,1,1,-0,-0.0,-0.0,0.0,-0.0,153,60.00, "000000492490000000000000000000000000000	
-2,0,1,1,-1,0,0,-0,0,0,0,-0,0,155,60,00, *000000924900000000000000000000000000000	
-2,1,0,1,-1,-0,0,-0,0,0,0,-0,0,155,60,00, "000000492490000000000000000000000000000	
-2,0,0,1,-2,-0.0,-0.0,0.0,-0.0,116,60.00, "000000492490000000000000000000000000000	
-2,1,0,1,-1,-0.0,-0.0,0,0,-0.0,-4,60.00, ,"000000492490000000000000000000000000000	
-2,0,0,1,-2,-0.0,-0.0,0.0,-0.0,-73,60.00, "000000492490000000000000000000000000000	-2,0,-1,1,-2,-0.0,-0.0,0.0,-0.0,56,60.00, ,"000000049249000000000000000000000000000
-1,1,1,1,1,0,0,-0,0,0,0,-0,0,-124,60,00, ,"000000492490000000000000000000000000000	-2,1,0,1,-1,-0.0,-0.0,0.0,-0.0,-4,60.00, ,"000000492490000000000000000000000000000
-2,1,0,1,-1,0,0,-0,0,0,0,-0,0,-153,60,00, , "000000492490000000000000000000000000000	-2,0,0,1,-2,-0.0,-0.0,0.0,-0.0,-73,60.00, ,"000000049249000000000000000000000000000
-2,0,0,1,-2,-0.0,-0.0,0.0,-0.0,-160,60.00, ,"000000492490000000000000000000000000000	
-2,0,1,1,-1,-0.0,-0.0,0.0,-0.0,-155,60.00, ,"000000492490000000000000000000000000000	
-2,1,-1,1,-2,-0.0,-0.0,0.0,-0.0,-116,60.00, "000000492490000000000000000000000000000	
-1,0,0,1,-1,0.0,-0.0,0.0,-0.0,-56,60.00, ,"000000492490000000000000000000000000000	
-2,0,0,1,-2,-0.0,-0.0,0.0,-0.0,4,60.00, *000000492490000000000000000000000000000	
-1,0,0,1,-1,-0.0,-0.0,0.0,-0.0,73,60.00, , "000000492490000000000000000000000000000	
-2,1,0,1,-1,-0.0,-0.0,0.0,-0.0,124,60.00, "000000492490000000000000000000000000000	
-1,1,0,1,-1,-0.0,-0.0,0.0,-0.0,153,60.00, ,"000000492490000000000000000000000000000	
-1,1,0,1,-1,0.0,-0.0,0.0,-0.0,160,60.00, , "000000492490000000000000000000000000000	
-1,1,0,0,-1,-0.0,-0.0,0.0,-0.0,155,60.00, ,"000000492490000000000000000000000000000	
-2,1,0,1,-1,0.0,-0.0,0.0,-0.0,116,60.00, , "000000492490000000000000000000000000000	
-2,1,0,1,-1,-0.0,-0.0,0.0,-0.0,57,60.00, , "000000492490000000000000000000000000000	
-1,1,-1,1,-1,0.0,-0.0,0.0,-0.0,-4,60.00, , "000000492490000000000000000000000000000	
-2,1,0,1,-1,-0.0,-0.0,0.0,-0.0,-72,60.00, ,"000000492490000000000000000000000000000	
-2,1,0,0,-1,0.0,-0.0,0.0,-0.0,-153,60.00, ,"000000049249000000000000000000000000000	
-2,1,0,1,-1,0.0,-0.0,0.0,-0.0,-160,60.00, , "000000049249000000000000000000000000000	-1,1,0,1,-1,0.0,-0.0,0.0,-0.0,-123,60.00, ,"000000049249000000000000000000000000000
	-2,1,0,1,-1,0.0,-0.0,0.0,-0.0,-160,60.00, ,"000000049249000000000000000000000000000
or Help, press F1	For Help, press F1

9.6 **Command Serial Comm**

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

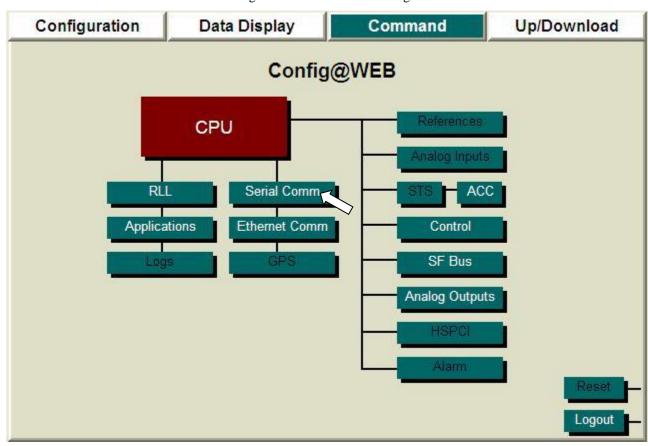


Figure 9-21 Command Tab Page

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2300 manual. Under Command Port Data, click Port Data.

Figure 9-22 Serial Comm Command Communications Port Dat	a
Ocurrent of Ocurrent universities Doub Date	

Command Communication Port Data							
Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode	
Port #1	К	К	Port 1	DNPR	Port Data	Normal 💌	
Port#2	К	К	Port 2	DNPM	Port Data	Normal 💌	
Port#3	К	К	Port 3	CDCI	Port Data	Normal 💌	
Port#4	К	К	Port 4	SEL	Port Data	Normal 💌	
Port#5	К	К	Port 5	None	Port Data	Normal 💌	
Port#6	К	К	Port 6	None	Port Data	Normal 💌	
Port#7	К	К	Port 7	None	Port Data	Normal 💌	
Port#8	К	К	Port 8	None	Port Data	Normal 💌	
Port#9	К	К	Port 9	None	Port Data	Normal 💌	
Port#10	К	К	Port 10	None	Port Data	Normal 💌	
Port#11	К	К	Port 11	None	Port Data	Normal 💌	
Port#12	К	К	Port 12	None	Port Data	Normal 💌	

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command Control Outputs.

SEL IED Command.						
Port # : 4 IED # : 1	Port Name : Por IED Name : FEEDE					
Туре	Number	Command				
Analog Inputs	52					
Status Inputs	28					
Accumulators	16					
Control Outputs	9	Command				
		Back				

Figure 9-23 SEL IED Command

The Control Outputs Command will give you a screen similar to Figure 2-34. The screen will display either Trip and Close only, or Pulse only, depending on the appropriateness for that particular point. After selecting an action, click the Execute button as shown in Figure 2-34.

SEL Control Outputs Command.								
Port#:4 IED #:1								
Point	Name	Point Operations						
1	BREAKER_1	⊙Trip ○Close ○Pulse Execute	2					
2	REMBIT_1	OTrip OClose OPulse Execute						
3	REMBIT_2	OTrip OClose OPulse Execute						
4	REMBIT_3	OTrip OClose OPulse Execute						
5	REMBIT_4	OTrip OClose OPulse Execute						
6	REMBIT_5	OTrip OClose OPulse Execute						
7	REMBIT_6	OTrip OClose OPulse Execute						
8	REMBIT_7	OTrip OClose OPulse Execute						
9	REMBIT_8	OTrip OClose OPulse Execute						
			Back					

9.7 **Tunnel Function**

The Tunnel Function is now accomplished through the SEL Emulation application. Please see the Config@WEB Applications Manual.

9.8 SEL Auto Configuration Theory

The software for auto-configuration does the following tasks:

RTU logs on to the SEL relay (Level 1 access needed to get some of the data)

- 1. Sends cancel sequence (0x11, 0x18) to stop any previous command.
- 2. Checks for a level 1 prompt ("=>")
- 3. Sends "Quit" to relay to start from a known state.
- 4. Checks for a level 1 prompt.
- 5. Sends "ACC" to relay.
- 6. Checks for Level 1 prompt (sent if relay has no defined Level 1 password).
- 7. Looks for password request ("Password ?")
- 8. If seen, sends the password from the configuration screen.
- 9. Checks for Level 1 prompt.
- 10. Returns an indication of success or failure to log on.

Get relay ID information

- 11. Send "ID".
- 12. Look for "FID=". Extracts following string and stores it in device type.
- 13. Send "SHOWSET" to get RID.
- 14. Look for "RID=". If found, extracts following string and stores it in device ID.
- 15. If no response to SHOWSET (some relays don't support it) copy device type into device ID.

- 16. Send 0x18, 0x0d to cancel any remaining SHOWSET response.
- If configured to get Event History data (HIS), reads the relay.xml file to determine the capabilities of the relay.
 - 17. If the RTU supports compressed event history (CHIS) for this relay, send "CAS" to the relay to retrieve the formats of compressed ASCII messages. Find the CHIS definition and the header line within that definition. Extract the names and positions of the time, date and analog data returned by the relay. Store the point names and their formats (integer, floating point, or string).
 - 1. If configured to get Event Summary data (EVE) and the RTU supports compressed events (CEV) for this relay, find the definition of the CEV definition. Count lines to the summary data line. Extract the names of analogs from the column headers and their formats.
 - 2. Otherwise, event summary data is not collected.
 - 18. If the RTU supports only uncompressed event history data for this relay, send an "HIS 1" command to retrieve a sample of the event history. Find the line containing the column headings and extract the names and positions of the time, date and analog data returned by the relay. Store the names, formats and the offset from the beginning of the data line to one character past the end of the column name, which is used as a limit on the field width to detect when a data item is left blank in the event history. When HIS is used, no event summary data (EVE) is retrieved.
 - 19. If the RTU supports neither compressed nor uncompressed event history for this relay, no event data can be reported for the relay. See Table 9-3 for a list of relays and the features that the RTU supports for them.
- Read Fast Meter configuration
 - 20. Send Faster Meter configuration request 0xA5C1.
 - 21. If response, checks message checksum.
 - 22. Extracts Fast Meter parameters from the response.
 - 23. Repeat for three attempts if error or no reply.
 - 24. Allocate database space for the number of analogs, digital inputs and controls indicated in the Fast meter response.
 - 25. Extract analog names and scaling factors from Fast Meter config if present.
 - 26. Extract number of defined calculations and extract parameters for each from the Fast Meter config.

Open the port configuration file and extract event enable, SER enable and event target format.

If SER data are to be retrieved, retrieve SER status point names.

- 27. Send "SHOWSET R" command.
- 28. Search response for "SER1=...", "SER2=...", "SER3=..." and "SER4=..." to get points the user has selected for inclusion in Sequence of Events Recorder reports. If present, each is followed by a list of target names, divided by commas. Extract all such names into storage, up to a maximum of 40.

Get relay status point names

- 29. Allocate storage for the number of status flags and status banks indicated in the Fast Meter config.
- 30. Check device type to see if the relay is a 421 which requires "DNA X" to retrieve digital point names.
- 31. Send "BNA" to get binary point names. Names come in sets of 8, separated by commas and followed by a checksum. Extract all names, skipping any "*" marking unused bit positions. BNA typically returns only one line, with one or two names defined.
- 32. Send "DNA" or "DNA X" to get digital point names. Extract point names as for BNA above. DNA or DNA X may return up to 400 or 500 point names in sets of eight.

33. If no names were returned by "DNA", send "DNA X" in case this is a 400-series relay like the 421 that requires the alternate command.

Get Fast Operate configuration

- 34. Send 0xA5CE to request fast-operate configuration.
- 35. If response, check the checksum.
- 36. Repeat up to 3 times on error or no reply.
- 37. Allocate storage for the number of breakers and "remote bits" defined in the Fast Operate config.
- 38. For each breaker, extract and store the 1-byte commands to perform a Trip or Close on that breaker.
- 39. For each remote bit, extract and store the 1-byte commands to perform an Open, Close or Pulse on that remote bit.

Update the configuration XML for this relay.

- 40. Open iedspr.xml. Find the IED for this serial port.
- 41. Open the protocol template file ptemp.xml. Find the template for SEL IEDs.
- 42. Update the device ID and instance number.
- 43. Replace the old IED with the IED template.
- 44. Update Analog XML section
 - 1. If there are no defined calculations, delete the "standard" 23 calculated analogs and the accumulators. Then correct point numbers and entity ID's for the event analog points.
 - 2. If there are calculations, set the entity ID's for the 16 power accumulators and the standard analogs.
 - 3. If there are any old analog tags following the event points, delete them.
 - 4. Create analog point XML for all "acquired" analogs from the Fast Meter configuration.
 - 5. For frequency analog, VBAT and VDC, insert analog scaling factors for those point types.
 - 6. If configured to get event data and the RTU supports either the compressed or uncompressed event history functions, insert analog points for the date, time, event type and other analogs returned in the event history, as identified in step 3.a above.
 - 7. If configured to get event history data and event summary data and the RTU supports the compressed event (CEV) function, insert analog points for the analog data returned in the event summary line of the CEV response.
 - 8. Replace the AI_LIST in iedspr.xml with the new AI_LIST just created.
- 45. Update the Status XML section
 - 1. Open a new XML string table and create the DI_LIST tag.
 - 2. Initialize the comm status point, always the first point.
 - 3. Copy the event target status points from the IED template XML. Set entity ID's for targets.
 - 4. If the event targets are ASCII names (as opposed to binary strings), assume that the first 16 status points are the event targets. Rename the event targets with the names obtained from DNA with a prefix "EVT-" to distinguish them from the same points received as ordinary status points.
 - 5. If Sequence of Events reports are enabled and SER target names were obtained with "SER1", etc., create SER target XML. Create two special points for "Relay newly powered up" and "Settings changed", as these must be handled differently (no target names to look up, and always "Asserted"). Create SER point XML for all names retrieved with "SER1", etc.
 - 6. Create XML for all status point names acquired with "BNA" or DNA".

- 7. Replace the DI_LIST tag from the IED template with the DI_LIST just created.
- 46. Update the Digital Output XML section
 - 1. Create XML tags for all breakers defined in the Fast Operate configuration.
 - 2. Create XML tags for all remote bit points defined in the Fast Operate configuration.
 - 3. Replace the template DO_LIST with the DO_LIST just created.
- 47. Update the SCAN XML section with number of points, etc., retrieved with the Fast Meter configuration.
- 48. Update the number of defined calculations. This tag is used by the GUI to know whether to expect the "standard" 23 calculated analogs to be present, or not.
- 49. For all defined calculations, create XML for all calculation parameters (line configuration, calculation type, current analog offsets, voltage analog offsets, skew, RS and XS correction offsets if present.
- 50. Update the iedspr.xml file.
- 51. Open and update the port file for device type and device ID retrieved above.

Relay Model	Compressed History (CHIS) Support	Compressed Event (CEV) Support	Uncompressed History (HIS) Support
300G	Yes	Yes	No
311A	Yes	Yes	No
311B	Yes	Yes	No
311C	Yes	Yes	No
311L	No	No	No
321	Yes	Yes	No
351	Yes	Yes	No
351A	Yes	Yes	No
351R	Yes	Yes	No
351S	Yes	Yes	No
387	Yes	Yes	No
387A	Yes	Yes	No
387E	Yes	Yes	No
387L	No	No	No
421	No	No	Yes
451	No	No	Yes
487B	Yes	No	No
501	No	No	No
547	Yes	Yes	No
551	Yes	No	No
551C	Yes	No	No
587	Yes	No	No
587Z	Yes	Yes	No
651R	No	No	Yes
701	No	No	No
710	No	No	No
734	No	No	Yes
749M	Yes	No	No

Series V Master 10

Serial Comm Port Configuration 10.1

Series V Master is a protocol that communicates between the RTU and an IED. It can be used to front-end an existing RTU in order to add new communication functionality within the substation while preserving the existing hardware I/O.

The Series V Master protocol running on an RTU can also be used at the master station as a front-end processor scanning multiple RTUs and converting the data to a different protocol.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Series V Master from the Protocol drop-down menu as shown.

Port Number	RTS	DTR	Configure IRQs	Name	Protocol	Protocol		Point Operations	Copy o Port
Port #1	К 🛩	К 🛩		RTU to IED	00.000 ()	*	Port 01	Configure	Сору
Port #2	К 💌	К 🕶	TROC	Port 2	None - RTU-IED -	^	Port 02	· .	Сору
Port #3	К 🛩	К 🕶	IRQ6	Port 3	2179 Arbiter		Port 03	· ·	Сору
Port #4	К 🛩	К 🛩		Port 4	C2020(M)		Port 04	· ·	Сору
Port #5	К 🛩	К 🛩		Port 5	C2100H(M) DNPM		Port 05	· ·	Сору
Port #6	К 🛩	К 🛩		Port 6	Electran ETI		Port 06	· ·	Сору
Port #7	К 🛩	К 🛩	IRQ6 💌	Port 7	Harris (M)		Port 07	· ·	Сору
Port #8	К 🛩	К 🛩		Port 8	Incom JEM2 ASCII	≡	Port 08	· ·	Сору
Port #9	К 🛩	К 🛩		Port 9	Modbus(M) Quantum		Port 09	· ·	Сору
Port #10	К 🛩	К 🛩	1000	<u>Port 10</u>	SEL Series V(M)		Port 10	· ·	Сору
Port #11	К 🛩	К 🛩	IRQ6 💌	<u>Port 11</u>	Symax		Port 11	· ·	Сору
Port #12	К 🛩	К 🛩		Port 12 Transdata	Tickle Transdata		Port 12	· ·	Сору
Communio	cation .	Associ	ations Con	fig	Tunnel - MTU-RTU - 8979				Back
	0.1		Port Nu		C2100H CDC I CDC II DNPR FM Harris (R) IDLC L&N	~			

Figure 10-1 Series V Master Communication Port Configuration

Communication Port Configuration

Port number

Physical Port number of the RTU.

10.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

10.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

10.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

10.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

10.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name						
Name Port 1						
	Cancel	Submit				

10.1.4 Protocol

From the drop-down list, select the protocol for this port.

10.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

10.1.6 Point Operations

Click this button to assign points.

10.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

10.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

10.2 Configure Protocol, Serial Comm

Under the heading Configure Protocol, click Port *n* to configure the Series V Master port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Figur	e 10-2 Series V Master Communication Channel Configuration
	Series V (M) Communication Channel Setup

	Series V (M) Communic	ation Channel Setup
	Port # : 1	Port Name : RTU to IED
	Number of IEDs	2
	Security Type	⊙ LRC ○ CRC
	Baud Rate *	1200 💌
	Parity *	Odd 💌
	Data Bits *	8 🕶
	Stop Bits *	1 🕶
	CTS Delay *	20 (ms)
	Rx Timeout *	10000 (ms)
	Interbyte Time *	100 (ms)
	Modem Turn Off Time *	0 (ms)
	Poll Time	100 (ms)
	Delay before first Byte *	5000 (ms)
	Hardware CTS	⊙No ○Yes
	Hardware DCD	⊙No OYes
	Retries Before Failing Points	3 (times)
Default: 0.	Integrity Scan Interval	30 (min)
Range: 0 to 32.		Cancel Submit

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

10.2.1 Number of IEDs (0-32)

Enter the number of IEDs on the port. The default setting is 0.

10.2.2 Security Type (LRC-CRC)

Click the security type. The Series V Communication Protocol uses two types of error detection techniques: Longitudinal Redundancy Check (LRC) or Cyclic Redundancy Check (CRC). Both security codes are described in the Series V Protocol Manual, B8300-AAA-00005. The default setting is LRC.

10.2.3 Baud Rate (300-19200)

From the drop-down menu, select the baud rate. The default setting is 1200.

10.2.4 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is Odd.

10.2.5 Data Bits (5,6,7,8)

From the drop-down menu, select the data bits for the associated channel. The default setting is 8.

10.2.6 Stop Bits (0,1,2)

From the drop-down menu, select the stop bits for the associated channel. The default setting is 1.

10.2.7 CTS Delay (0 – 250ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 20.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

10.2.8 Rx Timeout (0 – 60,000 msec)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 10000 msec.

Note: This timer must be <u>greater</u> than Delay for First Byte timer (below).

10.2.9 Interbyte Time (0 – 250ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 100 msec.

10.2.10 Modem Turn Off Time (0 – 250ms)

Enter the delay time that the modem will maintain the carrier after the last data byte has been transmitted. Default setting is 0.

10.2.11 Poll Time (0 – 10,000ms)

Enter the time to delay between a sequence of polling all the devices connected to this communications port. Default setting is 100.

10.2.12 Delay before First Byte (0 to 10,000ms)

Enter the delay time for the associated channel. This is the time allowed for a Slave Device to begin its response before the MTU assumes it is not going to reply and moves on to the next device. This parameter is typically set long because of delays in IED response. The default setting is 5000ms.

Note: This timer must be <u>less</u> than Rx Timeout (above).

10.2.13 Hardware CTS (No, Yes)

If the hardware Clear-To-Send option is selected for a channel, then data bytes will not be transmitted unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. Default setting is No.

10.2.14 Hardware DCD (No, Yes)

If the hardware data carrier detect option is selected for a channel, then the channel communications driver will accept message data bytes only if carrier is detected. If carrier is not detected, the data bytes are discarded. Default setting is No.

10.2.15 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

10.2.16 Integrity Scan Interval (0 – 10000 min)

Enter the time interval in minutes for integrity scans. The default is 30.

Please note: No configuration changes take effect until the RTU is reset.

10.3 **Point Operations**

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Series V(M) IED Configuration								
Port #	Port # 1 Port Name : RTU to							
IED #	IE	IED Address	ABER	BER On Sla Scan Cor		Copy to IED		
1	SV	M_IED_1	1	Y	Y	Edit	C	ору
2	SV	2	Y	Y	Edit	C	ору	
		IED #1 Configurat	ion				Х	Back
		IED Name		SVN	1_IED_1			
		IED Address		1				
		on Reportii	ng 💽 Y	res 🔿	No			
		On Scan *		<u>۱</u>	res 🔿	No	Set	

Figure 10-3 IED Configuration

10.3.1 IED

The logical number of the IED on this communication channel.

10.3.2 IED Name

Click on the IED Name. A pop-up window called **IED Configuration** will appear, as shown above.

10.3.2.1 IED Name

The name of the IED. Type in a name, or accept the default.

10.3.2.2 IED Address

The address of the IED. Type in an address, or accept the default.

10.3.2.3 Analog By Exception Reporting (ABER)

Reports analogs that exceed the Deadband (DB). Click No to disable ABER, or accept the default (Yes).

10.3.2.4 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled.

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

10.3.2.5 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

10.3.3 IED Address

Reflects the entry in the pop-up menu. See above.

10.3.4 ABER (Analog By Exception Reporting)

Y means the Analog By Exception function is ON. N means this function is OFF. See above.

10.3.5 On Scan

Reflects the entry in the pop-up menu. See above.

10.3.6 Slave Config

Click the Edit button to edit the IED points.

10.3.7 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

10.3.7.1 Slave Configuration Edit

10.3.8 Slave Config

Click Edit to continue. A screen similar to Figure 2-10 will appear.

Series V(M) I	ED Configuratio	n
Port # 1 IED # : 1	Port Name : IED Name : :	
Туре	Number	Edit
Analogs Inputs	12	Edit
Status Inputs	12	Edit
Accumulator Inputs	12	Edit
SBO Outputs	12	Edit
		Back

Figure 10-4 IED Configuration

10.3.9 Type

The type of point.

10.3.10 Number

Enter the number of points from your IED.

10.3.11 Edit

Click the Edit button to edit points.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

10.3.12 IED Analog Configuration

From the Series V Master IED Configuration screen, click on Edit for Analog Inputs. A screen similar to Figure 2-13 will appear.

	Se	ries V (M) Ana	alog Input Co	nfiguration		
Port # 4 IED # : 1	L					ort Name : Port 4 ame : SVM_IED_1
		Page 1 of 2	GoTo) Go		Next >>
Point	Name	C Min	C Max	EGU Min	EGU Max	DB
0	IED_ANALOG 0	-2000	2000	-100	100	7
1	IED_ANALOG 1	-2000	2000	400	100	7
2	IED_ANALOG 2	-2000	2000 Clie	ck on Header t	0	7
з	IED_ANALOG 3	-2000	2000 Cha	ange All		7
4	IED_ANALOG 4	-2000	2000 Cha	inge All	X	7
5	IED_ANALOG 5	-2000	2000 Valu	ue	Set	7
6	IED_ANALOG 6	-2000	2000 and	/or change		7
7	IED_ANALOG 7	-2000	2000		100	7
8	IED_ANALOG 8	-2000	2000	-100	100	7
9	IED_ANALOG 9	-2000	2000	-100	100	7
10	IED_ANALOG 10	-2000	2000	-100	100	7
11	IED_ANALOG 11	-2000	2000	-100	100	7
12	IED_ANALOG 12	-2000	2000	-100	100	7
13	IED_ANALOG 13	-2000	2000	-100	100	7
14	IED_ANALOG 14	-2000	2000	-100	100	7
15	IED_ANALOG 15	-2000	2000	-100	100	7
					Cano	cel Submit

Figure 10-5 Series V Master Analog Input Configuration

10.3.13 Point

Protocol logical point number. This number cannot be changed.

10.3.14 Name

Enter the name of the point (or accept the default name).

10.3.15 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

10.3.16 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

10.3.17 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

10.3.18 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

10.3.19 DB (Deadband)

Instructs the slave device to set the analog by exception deadband for a specified point, or for all points. The deadband value sent to the IED slave device is in raw counts. Downloading a deadband count of zero would effectively tell the IED to report all analogs. The default deadband count to be downloaded to the IED is 7.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

10.3.20 IED Status Configuration

From the Series V Master IED Configuration screen, click on Edit for Status. A screen similar to Figure 2-14 will appear.

Series V (M	1) Status Configuration
Port # 4 IED # : 1	Port Name : Port 4 IED Name : SVM_IED_1 Page 1 of 2 GoTo Go
Point	Name
-1	COMM_STS
0	IED_STS 0
1	IED_STS 1
2	IED_STS 2
З	IED_STS 3
4	IED_STS 4
5	IED_STS 5
6	IED_STS 6
7	IED_STS 7
8	IED_STS 8
9	IED_STS 9
10	IED_STS 10
11	IED_STS 11
12	IED_STS 12
13	IED_STS 13
14	IED_STS 14
	Cancel Submit

Figure 10-6 Series V Master Status Input Configuration

10.3.21 Point

Protocol logical point number. This number cannot be changed. The COMM_STS point is automatically assigned to show whether this IED has valid connections.

10.3.22 Name

Enter the name of the point (except for COMM_STS which can not be changed) or accept the default name.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

10.3.23 IED Accumulators Configuration

From the Series V Master IED Configuration screen, click on Edit for Accumulator Inputs. A screen similar to Figure 2-15 will appear.

Series V(M) A	ccumulator Configuration
Port # 4 IED # :1	Port Name : Port 4 IED Name : SVM_IED_1 Page 1 of 2 GoTo Go Next >>
Point	Name
0	IED_ACC 0
1	IED_ACC 1
2	IED_ACC 2
3	IED_ACC 3
4	IED_ACC 4
5	IED_ACC 5
6	IED_ACC 6
7	IED_ACC 7
8	IED_ACC 8
9	IED_ACC 9
10	IED_ACC 10
11	IED_ACC 11
12	IED_ACC 12
13	IED_ACC 13
14	IED_ACC 14
15	IED_ACC 15
	Cancel Submit

Figure 10-7	Series V	Master	Accumulators	Configuration
-------------	----------	--------	--------------	---------------

10.3.24 Point

Protocol logical point number. This number cannot be changed.

10.3.25 Name

Enter the name of the point or accept the default name.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in

the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

10.3.26 IED Controls Configuration

Click on Edit for SBO Outputs. A screen similar to Figure 2-17 will appear.

Figure 10-8 Series V Master Binary Outputs Configuration
Contract U(AA) Constructs Constructions

Series V(M) Controls Configuration		
Port # 4 IED # : 1	IE	Port Name : Port 4 D Name : SVM_IED_1
Point	Name	Execute Time
0	IED_SBO 0	500
1	IED_SBO 1	500
2	IED_SBO 2	500
3	IED_SBO 3	500
4	IED_SBO 4	500
5	IED_SBO 5	500
6	IED_SBO 6	500
7	IED_SBO 7	500
8	IED_SBO 8	500
9	IED_SBO 9	500
10	IED_SBO 10	500
11	IED_SBO 11	500
	(Cancel Submit

10.3.27 Point

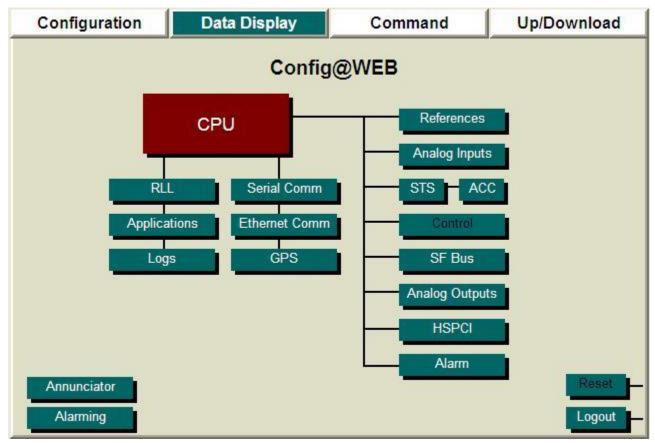
Protocol logical point number. This number cannot be changed

10.3.28 Point Name

Enter the name of the point (or accept the default name)

10.3.29 Execute Time

Enter the default Execute Time (or accept the default)


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

10.4 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 10-9 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 10-10 Display Communication Port Data	Figure	10-10	Display	Communication	Port Data
--	--------	-------	---------	---------------	-----------

Display Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	K	K	RTU to IED	Series V(M)	View	Port Data
Port #2	K	K	Port 2	None	View	Port Data
Port #3	K	K	Port 3	None	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port #5	К	К	Port 5	None	View	Port Data
Port #6	К	К	Port 6	None	View	Port Data
Port #7	K	К	Port 7	None	View	Port Data
Port #8	ĸ	ĸ	Port 8	None	View	Port Data
Port #9	ĸ	ĸ	Port 9	None	View	Port Data
Port #10	ĸ	ĸ	Port 10	None	View	Port Data
Port #11	ĸ	ĸ	Port 11	None	View	Port Data
Port #12	K	K	Port 12	None	View	Port Data

10.4.1 Port Number

Physical Port number of the RTU.

10.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

10.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

10.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

10.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

10.4.3 Name

The port name given during configuration or default name accepted.

10.4.4 Protocol

The configured protocol for this port.

10.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

10.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

10.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

10.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 10-11 Series V Master Communication Counters Display

Se	eries V(M) Communication Counte	ers Display
Port # : 1	Po	ort Name : RTU to IED
Point	Counter Name	Counts
1	Messages Sent	130
2	Messages Received	0
2	RX Timeouts	129
4 5	B4 Timer Violations	0
	IB Timer Violations	0
6	Security Errors	0
7	Parity Errors	0
8	Overrun Errors	0
9	Framing Errors	0
10	Hardware DCD Errors	0
11	Hardware CTS Errors	0
12	Short Messages	0
Data Trap	Configure	
		Back

Series V(M) Communication Counters Display

10.4.9 Point Number

A logical point number for reference only.

10.4.10 Counter Name

The following counters are monitored:

10.4.10.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

10.4.10.2 Messages Received

This indicates the cumulative number of received messages since the last reset or power-up.

10.4.10.3 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

10.4.10.4 B4 Timer Violations

This indicates the cumulative number of B4 Timer violations. This count can be affected by the setting of the B4 Time in configuration.

10.4.10.5 IB Timer Violations

This indicates the cumulative number of Interbyte timer violations since the last reset or power-up. This count can be affected by the setting of the Interbyte Time in configuration.

10.4.10.6 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

10.4.10.7 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

10.4.10.8 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

10.4.10.9 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

10.4.10.10 Hardware DCD Errors

This indicates the cumulative number of DCD errors since the last reset or power-up.

10.4.10.11 Hardware CTS Errors

This indicates the cumulative number of CTS errors since the last reset or power-up.

10.4.10.12 Short Messages

This indicates the cumulative number of times the IED being scanned returns a "Short Message" or error response since the last reset or power-up.

10.4.11 Counts

The counts for each type of Counter.

10.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

10.4.13 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Figure 10-12 Series V Master IED Display

Series V(M) IED Display						
Port # :	1			Port Name : R	TU to IED	
IED #	IED Name	IED Address	ABER	On Scan	Slave Data	
1	SVM_IED_1	1	Y	Y	View	
2	SVM_IED_2	2	Y	Y	View	
					Back	

10.4.14 IED

The logical number of the IED on this communication channel.

10.4.15 IED Name

The name that was chosen, or accepted as default, during configuration.

10.4.16 IED Address

The IED Address chosen during configuration.

10.4.17 ABER (Analog By Exception Reporting)

Y (Yes) means the Analog By Exception function is ON. N (No) means this function is OFF.

10.4.18 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

10.4.19 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

Figure 10-13 Series V Master IED Display

Series V(M) IED Display				
: 1 Port Name : RTU to IED 1 IED Name : SVM_IED_1				
Number	View			
12	View			
13	View			
12	View			
12				
	IED Na Number 12 13 12			

10.4.20 Type

The type of point.

10.4.21 Number

The number of points from your IED.

10.4.22 View

Click the View button to view points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the previous screen.

10.4.22.1 Analog Inputs

From the Series V Master IED Display screen, click View for Analog Inputs to get the screen shown in Figure 2-24.

Figure 10-14	Series V	Master	Analog	Inputs	Display
--------------	----------	--------	--------	--------	---------

	Series V(M) Analog Inputs	5 Display		
Port # : 1 IED # : 1				ame : RTU to IED ame : SVM_IED_1
	Page1 of 1 Go	To GO		
Point	Point Name	Point Status	Point Value	Point Counts
0	IED_ANALOG 0	F	-100.000	0
1	IED_ANALOG 1	F	-100.000	0
2	IED_ANALOG 2	F	-100.000	0
3	IED_ANALOG 3	F	-100.000	0
4	IED_ANALOG 4	F	-100.000	0
5	IED_ANALOG 5	F	-100.000	0
6	IED_ANALOG 6	F	-100.000	0
7	IED_ANALOG 7	F	-100.000	0
8	IED_ANALOG 8	F	-100.000	0
9	IED_ANALOG 9	F	-100.000	0
10	IED_ANALOG 10	F	-100.000	0
11	IED_ANALOG 11	F	-100.000	0
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	• • •	-	-	-
				Back

10.4.23 Point

Protocol logical point number.

10.4.24 Point Name

The name of the point assigned during configuration.

10.4.25 Point Status

Please see the Config@WEB Secure Software Users Guide.

10.4.26 Point Value

The engineering unit (EGU) value.

10.4.27 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

10.4.27.1 Status Inputs

From the Series V Master IED Display screen, click View for Status Inputs to get the screen shown in Figure 2-25.

Figure 10-15	Series V Master Status Inputs Display	у
--------------	---------------------------------------	---

	Series V(M) Status Ir	nputs Display	1	
Port # : 1 IED # : 1			rt Name : RTU to	
IED #.1	Page1 of 1 Go	To Go	D Name : SVM_IE	:D_1
D-1-4				
Point	Point Name	Point Status	Point State	•
-1	COMM_STS		CLOSED	•
0	IED_STS 0	F	OPEN	•
1	IED_STS 1	F	OPEN	•
2	IED_STS 2	F	OPEN	•
3	IED_STS 3	F	OPEN	•
4	IED_STS 4	F	OPEN	•
5	IED_STS 5	F	OPEN	•
6	IED_STS 6	F	OPEN	•
7	IED_STS 7	F	OPEN	•
8	IED_STS 8	F	OPEN	•
9	IED_STS 9	F	OPEN	•
10	IED_STS 10	F	OPEN	•
11	IED_STS 11	F	OPEN	•
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
			Bac	k)

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not this IED is in good communications. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

10.4.28 Point

Protocol logical point number.

10.4.29 Point Name

The name of the point assigned during configuration.

10.4.30 Point Status

Please see the Config@WEB Secure Software Users Guide.

10.4.31 Point State

Indicates that point is either OPEN or CLOSED.

10.4.32 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

10.4.32.1 Accumulator Inputs

From the Series V Master IED Display screen, click View for Accumulators to get the screen shown in Figure 2-26.

Series V(M) Accumulator Inputs Display						
Port # : 1 IED # : 1			rt Name : RTU to IED) Name : SVM_IED_1			
	Page1 of 1 Go To Go)				
Point	Point Name	Point Status	Count			
0	IED_ACC 0	F	0			
1	IED_ACC 1	F	0			
1 2 3 4 5	IED_ACC 2	F	0			
3	IED_ACC 3	F	0			
4	IED_ACC 4	F	0			
5	IED_ACC 5	F	0			
6 7	IED_ACC 6	F	0			
	IED_ACC 7	F	0			
8	IED_ACC 8	F	0			
9	IED_ACC 9	F	0			
10	IED_ACC 10	F	0			
11	IED_ACC 11	F	0			
-	-	-	-			
-	-	-	-			
-	-	-	-			
-	-	-				
			Back			

Figure 10-16 Series V Master Counter Inputs Display

10.4.33 Point

Protocol logical point number.

10.4.34 Point Name

The name of the point assigned during configuration.

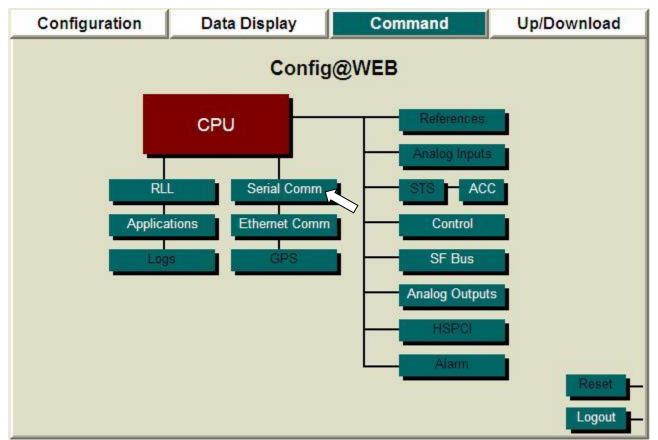
10.4.35 Point Status

Please see the Config@WEB Secure Software Users Guide.

10.4.36 Count

The accumulated count.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.


10.4.36.1 SBO Outputs

There is no display for SBO Outputs.

10.5 Command Serial Comm

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2200 manual. Under Command Port Data, click Port Data.

Command Communication Port Data Port pro Data Command Port Test Marks						
Port Number	RTS	DTR	Name	Protocol	Data	Test Mode
Port #1	К	К	RTU to IED	Series V(M)	Port Data	Normal 💌
Port #2	К	K	Port 2	None	Port Data	Normal 💌
Port #3	К	K	Port 3	None	Port Data	Normal 🗠
Port #4	К	K	Port 4	None	Port Data	Normal 🗠
Port #5	К	K	Port 5	None	Port Data	Normal 💌
Port #6	К	K	Port 6	None	Port Data	Normal 🗠
Port #7	К	K	Port 7	None	Port Data	Normal 🗠
Port #8	К	K	Port 8	None	Port Data	Normal 🗠
Port #9	К	K	Port 9	None	Port Data	Normal 🗠
Port #10	К	K	Port 10	None	Port Data	Normal 🗠
Port #11	К	К	Port 11	None	Port Data	Normal 🗠
Port #12	К	K	Port 12	None	Port Data	Normal 🗸

The resultant screen will be similar to Figure 2-31. Click on the Command button as shown.

Series V(M) IED Command							
Port # : 1 Port Name : RTU to IED							
IED #	IED Name	IED Address	ABER	On Scan	Slave Data		
1	SVM_IED_1	1	Y	Y	Command		
2	SVM_IED_2	2	Y	Y	Command		
	Back						

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command SBO Outputs.

Series V(M) IED Command					
Port # : 1 Port Name : RTU to IE IED # : 1 IED Name : SVM_IED_					
Туре	Number	Command			
Analog Inputs	12				
Status Inputs	13				
Accumulators	12				
SBO Outputs	12	Command			
		Back			

Click on the Command button. The resulting screen will look like Figure 10-21 after either a Trip or Close has been selected, then click the Execute button.

Figure 10-21 Series V SBO Outputs Command

Port # : 1 IED # : 1		(M) SBO Outputs C			: RTU to IED : SVM_IED_1
	Page	1 of 1 GoTo	Go		
Point	Name	Execute Time (ms)	Poi	int Operati	ons
0	IED_SB0 0	500	Trip (O Close	Execute
1	IED_SB0 1	500	🔿 Trip 🔇	O Close	Execute
2	IED_SB0 2	500	🔿 Trip 🔇	O Close	Execute
3	IED_SB0 3	500	🔿 Trip 🔇	O Close	Execute
4	IED_SBO 4	500	🔿 Trip 🔇	O Close	Execute
5	IED_SB0 5	500	🔿 Trip 🔇	O Close	Execute
6	IED_SB0 6	500	🔿 Trip 🔇	O Close	Execute
7	IED_SB0 7	500	🔿 Trip 🔇	O Close	Execute
8	IED_SB0 8	500	🔿 Trip 🔇	O Close	Execute
9	IED_SB0 9	500	🔿 Trip 🔇	O Close	Execute
10	IED_SBO 10	500	🔿 Trip 🔇	O Close	Execute
11	IED_SB0 11	500	🔿 Trip 🔇	O Close	Execute
					Back

11 Symax

11.1 Serial Comm Port Configuration

Symax is a protocol that communicates between the RTU and an IED.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Symax from the Protocol drop-down menu as shown.

	Communication Port Configuration																	
Port Number	RTS	DTR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations	Copy to Port									
Port #1	К 🛩	К 🛩		RTU to IED	Symax	~	Port 01	Configure	Сору									
Port #2	К 💌	К 🛩	IRQ6	Port 2	None - RTU-IED -	^	Port 02	· ·	Сору									
Port #3	К 💌	К 🛩	IKQ0	Port 3	2179 Arbiter		Port 03	-	Сору									
Port #4	К 💌	К 🛩		Port 4	C2020(M)		Port 04	· ·	Сору									
Port #5	К 💌	К 🛩		<u>Port 5</u>	C2100H(M) DNPM		Port 05	· .	Сору									
Port #6	К 💌	К 🛩		Port 6	Electran ETI		Port 06	-	Сору									
Port #7	К 💌	К 🛩		Port 7 Harris (M)		Port 07	· .	Сору										
Port #8	К 🛩	К 🛩		Port 8	Incom JEM2 ASCII		Port 08	•	Сору									
Port #9	К 🕶	К 🛩	Port 10 SEL IRQ6 ✓ Port 11 Symax		Port 09	· .	Сору											
Port #10	К 💌	К 🛩		IRQ6 💌	IRQ6 💌	IRQ6 💌	IRQ6 💌	IRQ6 💌	IRQ6 💌	IRQ6 💌	<u>Port 10</u>			Port 10	· .	Сору		
Port #11	К 🛩	К 🛩											IKQ6 M	IKQ6 M				
Port #12	К 🕶	К 🛩		<u>Port 12</u>	Tickle Transdata		Port 12	•	Сору									
Communio	cation	Associ	iations Cont	fig	Tunnel - MTU-RTU				Back									
					8979													
					C2100H CDCI													
					CDCII													
					DNPR													
					FM Harria (D)													
					Harris (R) IDLC													
1	1 1	1	Dart Nu	unahar	L&N	~												

Figure 11-1 Symax Communication Port Configuration

11.1.1 Port Number

Physical Port number of the RTU.

11.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

11.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

11.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

11.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

11.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name							
Name Port 1							
	Cancel	Submit					

11.1.4 Protocol

From the drop-down list, select the protocol for this port.

11.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

11.1.6 Point Operations

Click this button to assign points.

11.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

11.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

11.2 Configure Protocol, Serial Comm

Under the heading Configure Protocol, click Port *n* to configure the Symax port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

	symax communication channel setup		
Po	ort#:1	Port Name : RTU to I	
	Number of IEDs	2	
	Symax Master Address	100	
	Baud Rate *	9600 💌	
	Parity *	Even 💌	
	Data Bits *	8 🛩	
	Stop Bits *	1 💌	
	CTS Delay *	20 (ms)	
	Modem Turn Off Time *	0 (ms)	
	Rx Timeout *	2000 (ms)	
	B4 Time *	50 (ms)	
	Interbyte Time *	250 (ms)	
	Hardware CTS	⊙No OYes	
	Hardware DCD	⊙No OYes	
	Retries Before Failing Points	3 (times)	
	Read Cycle	3000 (ms)	
	Time Format	● Local ● UTC	

Figure 11-2 Symax Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

11.2.1 Number of IEDs (0-32)

Enter the number of IEDs on the port. The default setting is 0.

11.2.2 Symax Master Address (0 - 199)

Enter the Symax Master address. Since Symax is designed for network communications, multiple masters are allowed in the same network. The default is 100.

11.2.3 Baud Rate (300-19200)

From the drop-down menu, select the baud rate. The default setting is 9600.

11.2.4 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is Even.

11.2.5 Data Bits (5,6,7,8)

From the drop-down menu, select the data bits for the associated channel. The default setting is 8.

11.2.6 Stop Bits (0,1,2)

From the drop-down menu, select the stop bits for the associated channel. The default setting is 1.

11.2.7 CTS Delay (0 – 1000ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 20.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

11.2.8 Modem Turn Off Time (0 – 250ms)

Enter the delay time that the modem will maintain the carrier after the last data byte has been transmitted. Default setting is 0.

11.2.9 Rx Timeout (0 – 30,000 msec)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 2000 msec.

11.2.10 B4 Time (0 – 250ms)

Enter the B4 time for the associated channel. The B4 time is the length of quiet time required on the channel following a transmission from the RTU prior to turning on the RTU's receive interrupts. Default setting 50.

11.2.11 Interbyte Time (0 – 250ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 250 msec.

11.2.12 Hardware CTS (No, Yes)

If the hardware Clear-To-Send option is selected for a channel, then data bytes will not be transmitted unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. Default setting is No.

11.2.13 Hardware DCD (No, Yes)

If the hardware data carrier detect option is selected for a channel, then the channel communications driver will accept message data bytes only if carrier is detected. If carrier is not detected, the data bytes are discarded. Default setting is No.

11.2.14 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

11.2.15 Read Cycle (0 – 90,000ms)

This is the base time at which data scanning from Symax IEDs takes place. All data scanning will be in multiples of this value. Analogs and Accumulators are set up in multiples of cycles on a per point basis to be scanned. The default is 3000.

Please note: No configuration changes take effect until the RTU is reset.

11.2.16 Time Format (Local, UTC)

Note: The coordination between UTC and local time is a feature that may be ignored. If you want your RTU to act as it always has in regards to time syncs, set Time Format to Local Time. See Time Configuration Settings in the Configuration chapter of the hardware manual for time settings under the CPU block.

If you want to send time synchronization to this device, you must know whether the device will accept Local time or UTC time, then set this radio button to match.

11.3 **Point Operations**

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Symax IED Configuration									
Port # : 1	Port #: 1 Port Name : RTU to IED								
IED #	IED Name	IED Address	Sync Interval	Device Type	On Scan	Slave Config	Copy to IEDn	Export Import	
1	SY_IED_1	1	60	CM2xxx	Y	Edit	Сору	Exp Imp	
2	SY_IED_2	2	60	PM6xx	Y	Edit	Сору	Exp Imp	
	IED #2 (Configuration			1	X		Back	
	IED Nan	ne	SY_IED_	2					
	IED Add	ress	2						
	Sync Inte	erval	60 ((sec)					
	Device T	уре	PM6xx	*					
	On Scan	*	⊙Yes (O No	S	et			

Figure 11-3 IED Configuration

11.3.1 IED

The logical number of the IED on this communication channel.

11.3.2 IED Name

Click on the IED Name. A pop-up window called **IED Configuration** will appear, as shown above.

11.3.2.1 IED Name

The name of the IED. Type in a name, or accept the default.

11.3.2.2 IED Address

The address of the IED. Type in an address, or accept the default.

11.3.2.3 Sync Interval

The time interval in seconds at which the RTU will sync the Symax IEDs. Accept the default time or enter a new time.

11.3.2.4 Device Type

Select either CM2xxx or PM6xx as the Symax Device Type. Since there are protocol differences between these two Symax devices, it is necessary to define to the RTU which device it is scanning.

11.3.2.5 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled.

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

11.3.2.6 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

11.3.3 IED Address

Reflects the entry in the pop-up menu. See above.

11.3.4 Sync Interval

The time interval at which the RTU will sync the Symax IED. See above.

11.3.5 Device Type

Reflects either CM2xxx or PM6xx. See above.

11.3.6 On Scan

Reflects the entry in the pop-up menu. See above.

11.3.7 Slave Config

Click the Edit button to edit the IED points.

11.3.8 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

11.3.9 Export

The Exp button exports a configuration in xml format from the IED to the RTU as a template. The templates are protocol/IED specific. This template is stored in the RTU. When you choose Up/Download tab and click on "Get" (get files from RTU), you will transfer these templates to your PC.

Choose from one of the existing file types (if present), or create a new xml file type. Click Save after your selection.

Symax IED Configuration										
Port#:3	Port #: 3 Port Name : Port 3									
IED #	IED Name	IED Address	Sync Interval	Device Type	Un Scan	Slave Config	Copy to IEDn	Export Import		
1	SY_IED_1	1	60	CM2xx	x N	Edit	Copy	Exp Imp		
	Save Template X							Back		
					Replace Existi	ng	×			
					(OR)					
symax.xml BaselineCM2XXX.xml					Create New					
				Save]					

11.3.10 Import

The Imp button imports a configuration in xml format as shown below. Choose from one of the existing file types (if present) shown in the pull-down menu. If a new file type has been created under Export, that file type will also show up in the pull-down menu. When you set up another RTU, choose the Up/Download tab and click "Send" (send files to RTU), the template you save in the first RTU will be downloaded to the second RTU. Click Get after your selection below.

	Symax IED Configuration									
Port#:3	Port#:3 Port Name : Port 3									
IED #	IED Name	IED Address	Sync Interval	Device Type	On Scan	Slave Config	Copy to IEDn	Exp Imp		
1	SY_IED_1	1	60	CM2xxx	N	Edit	Сору	Ехр	Imp	
	Load Template X							Back		
		symax.xml			Load T	emplate		~		
	BaselineCM2XXX.xml Get									

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

11.3.10.1 Slave Configuration Edit

11.3.11 Slave Config

Click Edit to continue. A screen similar to Figure 2-10 will appear.

Symax IED Configuration					
Port # 1 IED # : 2	Port Name : RTU to IED IED Name : SY_IED_2				
Туре	Number	Edit			
Analogs Inputs	16	Edit			
Binary Inputs	16	Edit			
Counters	32	Edit			
Analog Outputs	12	Edit			
		Back			

Figure 11-4 IED Configuration

11.3.12 Type

The type of point.

11.3.13 Number

Enter the number of points from your IED.

11.3.14 Edit

Click the Edit button to edit points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

11.3.15 IED Analog Configuration

From the Symax IED Configuration screen, click on Edit for Analog Inputs. A screen similar to Figure 2-13 will appear.

Symax Analog Input Configuration

Port # 2 IED # : 1					IE	Port Nar :D Name :	ne : Port 2 SY_IED_:
		Page 1 of 4	GoT	To GO			Next≻≻
Point	Name	C Min	C Max	EGU Min	EGU Max	Register	Cycle
0	F, Frequency Hz	2300	6700	23	67	1001	1
1	T, Temperature C	-10000	10000	-100	100	1002	
2	IA, Phase A Current	0		on Header to	132767	on Heade Increment	
3	IB, Phase B Current	0	32767 Chang			ncrement	Х
4	IC, Phase C Current	0	32767 Value		32767 Value	1001	Set
5	IN, Neutral Current	0	32767		32767 and/o	r change	
6	VAB, A-B Volts	0	32767 and/or	change	32767	1014	
7	VBC, B-C Volts	0	32767	0	32767	1015	1
8	VCA, C-A Volts	0	32767	0	32767	1016	1
9	VA, Phase A Volts	0	32767	0	32767	1018	1
10	VB, Phase B Volts	0	32767	0	32767	1019	1
11	VC, Phase C Volts	0	32767	0	32767	1020	1
12	PFA, Power Factor A+	0	1000	0	1	1031	1
13	PFA, Power Factor A-	-32767	-31767	0	-1	1031	1
14	PFC, Power Factor C	-1000	1000	-1	1	1033	1
15	PFT, Power Factor T	-1000	1000	-1	1	1034	1
					Car	ncel (S	Submit

11.3.16 Point

Protocol logical point number. This number cannot be changed.

11.3.17 Name

Enter the name of the point (or accept the default name).

11.3.18 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

11.3.19 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

11.3.20 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

11.3.21 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

11.3.22 Register

Enter the Symax register number associated with the point to be scanned as defined in the IEDs' users manual.

11.3.23 Cycle

Enter the value to be multiplied by the Read cycle to define how often each point is to be scanned.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

11.3.24 IED Status Configuration

From the Symax IED Configuration screen, click on Edit for Status Inputs. A screen similar to the one below will appear

Symax Status Configuration								
Port # 3 IED # : 1		Port Name : Port 3 IED Name : SY IED 1						
Point	Name	Register # BIT Cycle						
-1	COMM_STS							
0	IED_STS 0	240 Click on Header to						
1	IED_STS 1	240 Change All						
2	IED_STS 2	240 Change All Value Set						
3	IED_STS 3	240						
4	IED_STS 4	240 Change All Auto Increment						
5	IED_STS 5	240						
6	IED_STS 6	2400 0 💙 1						
7	IED_STS 7	2400 0 🖌 1						
		Cancel Submit						

Figure 11-6 Symax Status Input Configuration

11.3.25 Point

Protocol logical point number. This number cannot be changed. The COMM_STS point is automatically assigned to show whether this IED has valid connections.

11.3.26 Name

Enter the name of the point (except for COMM_STS which can not be changed) or accept the default name.

11.3.27 Register

Enter the Symax register number associated with the point to be scanned as defined in the IEDs' users manual.

11.3.28 BIT

Select the BIT (0-15) from the defined register to be read into the RTU as a status point.

11.3.29 Cycle

Enter the value to be multiplied by the Read cycle to define how often each point is to be scanned.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

11.3.30 IED Accumulators Configuration

From the Symax IED Configuration screen, click on Edit for Accumulator Inputs. A screen similar to Figure 2-15 will appear.

	Symax Accumulator Configuration							
Port # 3 IED # : 1			Port Name : Port 3 IED Name : SY_IED_1					
Point	Name	Туре	Register Cycle					
0	IED_ACC 0	16 💌	0 1					
1	IED_ACC 1	32 💌	Click on Header to					
2	IED_ACC 2	Power Meters	Change All					
3	IED_ACC 3	SquareD CM2000						
4	IED_ACC 4	SquareD CM2000 Incr ⊻	Value Set					
5	IED_ACC 5	SquareD CM4000	Change All Auto Increment					
6	IED_ACC 6	ION						
7	IED_ACC 7	Power Meter Signed 💌	0 1					
8	IED_ACC 8	16 🗸	0 1					
9	IED_ACC 9	16 💌	0 1					
	Cancel Submit							

11.3.31 Point

Protocol logical point number. This number cannot be changed.

11.3.32 Name

Enter the name of the point or accept the default name.

11.3.33 Type

Select the accumulator type from the drop–down menu. Examples of the types are shown above. All entries in this column may be changed at once by clicking on the header.

11.3.33.1 16

16-bit binary counter in one Modbus register

11.3.33.2 32

32-bit binary counter in two successive ModBus registers, first register treated as containing the high-order 16 bits. Selecting 32 bits will cause the protocol to combine the value from the next logical register with that of the current register value. I.e., If you configure point 1 to be a 32 bit point, the RTU will poll the IED for registers 1 and 2 and combine their values to create 1 32 bit number. Point 2 then should be configured to get register number 3 instead of register 2.

11.3.33.3 Power Meters, Square D CM2000, Square D CM2000 Incr., Square D CM4000

All counters are treated as three 16-bit registers. The two bytes of each register are reversed. First register is divided by 1000 to convert from watts to kilowatts. The second register is multiplied by

1000 and added to the first. The third register is multiplied by 100,000 and added to the previous result. The resulting value runs from 0 to 999,999,999 kilowatts.

11.3.33.4 ION

ABB ION meter accumulators are received in two registers. The first register is multiplied by 10,000 and added to the second register. Counters run from 0 to 99,999,999.

11.3.33.5 Power Meter Signed

By setting for this Type, the protocol will accept signed counters. That is, In signed mode, the power meter IED considers the direction of power flow, allowing the accumulated energy magnitude to both increase and decrease.

11.3.34 Register

Enter the Symax register number associated with the point to be scanned as defined in the IEDs' users manual.

11.3.35 Cycle

Enter the value to be multiplied by the Read cycle to define how often each point is to be scanned.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

11.3.36 Analog Outputs

From the Symax IED Configuration screen, click on Edit for Analog Outputs. A screen similar to the one below will appear.

	Symax Analog Output Conngulation							
Port # 2 I <u>ED # : 1</u>						Port Nan IED Name :	ne : Port 2 SY_IED_1	
Point	Name	C Min	C Max	EGU Min	EGU Max	Register #	Cycle	
0	IED_AO_ 0	-32767	32767	-100	100	0	1	
1	IED_AO_ 1	-32767	32767	-100	100	0	1	
2	IED_AO_ 2	-32767	32767	-100	100	0	1	
3	IED_AO_ 3	-32767	32767	-100	100	0	1	
						Cancel (Submit	

Figure 11-8	Symax Analog Output Configuration
Cumany	halog Output Configuration

11.3.37 Point

Protocol logical point number. This number cannot be changed

11.3.38 Name

Enter the name of the point (or accept the default name)

11.3.39 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header

11.3.40 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header

11.3.41 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header

11.3.42 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header

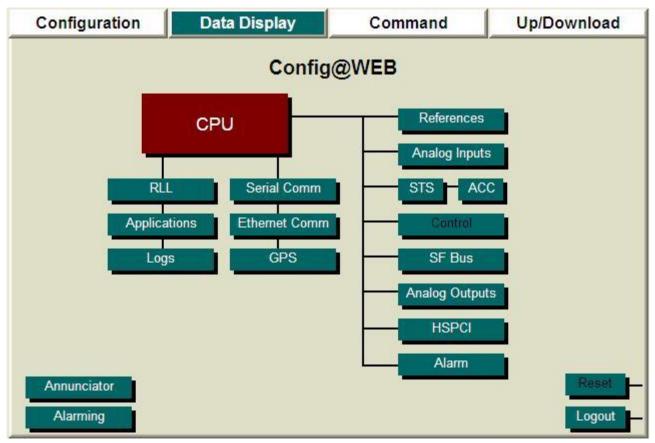
11.3.43 Register

Enter the Symax register number associated with the point to be scanned as defined in the IEDs' users manual.

11.3.44 Cycle

Enter the value to be multiplied by the Read cycle to define how often each point is to be scanned.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

11.4 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 11-9 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 11-10	Display Communication	Port Data
--------------	------------------------------	-----------

Display Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	К	K	RTU to IED	Symax	View	Port Data
Port #2	К	K	Port 2	None	View	Port Data
Port #3	К	K	Port 3	None	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port #5	К	К	Port 5	None	View	Port Data
Port #6	К	K	Port 6	None	View	Port Data
Port #7	К	К	Port 7	None	View	Port Data
Port #8	К	К	Port 8	None	View	Port Data
Port #9	К	К	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port #11	К	К	Port 11	None	View	Port Data
Port #12	К	K	Port 12	None	View	Port Data

11.4.1 Port Number

Physical Port number of the RTU.

11.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

11.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

11.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

11.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

11.4.3 Name

The port name given during configuration or default name accepted.

11.4.4 Protocol

The configured protocol for this port.

11.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

11.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

11.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

11.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 11-11 Symax Communication Counters Display

	Symax Communication Counters	Display
Port # : 4		Port Name : Port 4
Point	Counter Name	Counts
1	Messages Sent	0
2	Good Replies	0
3	No Reply/Timeout	0
4	Checksum Errors	0
5	Framing Errors	0
6	Overrun Errors	0
7	Parity Errors	0
8	Bad Replies	0
9	Write Failures	0
10	IB Timer Violations	0
11	Device Busy	0
12	Hardware DCD Errors	0
13	Hardware CTS Errors	0
Data Trap		
	n Counters View	
Reset Cor	mm Counters Reset	
		Back

Symax	Communication	Counters	Display

11.4.9 Point Number

A logical point number for reference only.

11.4.10 Counter Name

The following counters are monitored:

11.4.10.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

11.4.10.2 Good Replies

This indicates the cumulative number of good replies since the last reset or power-up.

11.4.10.3 No Replies/Timeout

This indicates the cumulative number of no replies or timeouts since the last reset or power-up.

11.4.10.4 Checksum Errors

This indicates the cumulative number of Checksum Errors since the last reset or power-up.

11.4.10.5 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

11.4.10.6 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

11.4.10.7 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

11.4.10.8 Bad Replies

This indicates the cumulative number of Bad Replies since the last reset or power-up.

11.4.10.9 Write Failures

This indicates the cumulative number of Write Failures since the last reset or power-up.

11.4.10.10 **IB** Timer Violations

This indicates the cumulative number of Interbyte timer violations since the last reset or power-up. This count can be affected by the setting of the Interbyte Time in configuration.

11.4.10.11 **Device Busy**

This indicates the cumulative number of times the IED was too busy to reply since the last reset or power-up.

11.4.10.12 Hardware DCD Errors

This indicates the cumulative number of DCD errors since the last reset or power-up.

11.4.10.13 Hardware CTS Errors

This indicates the cumulative number of CTS errors since the last reset or power-up.

11.4.11 Counts

The counts for each type of Counter.

11.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

11.4.13 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

Port # : 1 Port Name : Port 1 Overrun Security Framing Parity Messages Valid No IED # IED Name Timeouts Replies Replys Errors Errors Errors Errors Sent 0 0 0 0 1 SY_IED_1 0 0 0 0 0 2 SY_IED_2 0 0 0 0 0 0 0 Done

Symax IED Comm Counters Display

11.4.13.1 IED

The number of the IED

11.4.13.2 IED Name

The name of the IED

11.4.13.3 Messages Sent

Messages sent to this IED since the last reset or since the last time the counters were cleared.

11.4.13.4 Valid Replies

Valid messages received from this IED since the last reset or since the last time the counters were cleared.

11.4.13.5 No Replies

The number of no replies from this IED since the last reset or since the last time the counters were cleared.

11.4.13.6 Timeouts

The number of timeouts from this IED since the last reset or since the last time the counters were cleared.

11.4.13.7 Security Errors

The number of security errors from this IED since the last reset or since the last time the counters were cleared.

11.4.13.8 Framing Errors

The number of framing errors from this IED since the last reset or since the last time the counters were cleared.

11.4.13.9 Overrun Errors

The number of overrun errors from this IED since the last reset or since the last time the counters were cleared.

11.4.13.10 Parity Errors

The number of parity errors from this IED since the last reset or since the last time the counters were cleared.

11.4.14 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

11.4.15 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Figure 11-12 Symax IED Display

Symax IED Display							
Port # : 1	Port #: 1 Port Name : RTU to IED						
IED #	IED Name	IED Address	Sync Interval	Meter Type	On Scan	Slave Data	
1	SY_IED_1	1	60	CM2xxx	Y	View	
2	SY_IED_2	2	60	PM6xx	Y	View	
						Back	

11.4.16 IED

The logical number of the IED on this communication channel.

11.4.17 IED Name

The name that was chosen, or accepted as default, during configuration.

11.4.18 IED Address

The IED Address chosen during configuration.

11.4.19 Sync Interval

The time interval in seconds at which the RTU will time-sync the Symax IED.

11.4.20 Meter Type

Reflects either CM2xxx or PM6xx.

11.4.21 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

11.4.22 Slave Data

Click View to examine the data being returned from this device.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

279

From the IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

Figure 11-13	Symax IED Display
--------------	-------------------

• •					
Symax IED Display					
Port # 1 Port Name : RTU to IED IED # : 2 IED Name : SY_IED_2					
Туре	Number	Edit			
Analogs Inputs	16	View			
Binary Inputs	17	View			
Counters	32	View			
Analog Outputs	12	View			
		Back			

11.4.23 Type

The type of point.

11.4.24 Number

The number of points from your IED.

11.4.25 View

Click the View button to view points.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the previous screen.

11.4.25.1 Analog Inputs

From the Symax IED Display screen, click View for Analog Inputs to get the screen shown in Figure 2-24.

Figure 11-14 Symax Analog Inputs Display

Symax Analog Inputs Display					
Port # : 1 IED # : 1					ame : RTU to IED Name : SY_IED_1
		Page1 of 1 Go To	Go		
Point	Reg	Point Name	Point Status	Point Value	Point Counts
0	1	IED_ANALOG 0	F	-100.000	-32767
1	2	IED_ANALOG 1	F	-100.000	-32767
2	3	IED_ANALOG 2	F	-100.000	-32767
3	4	IED_ANALOG 3	F	-100.000	-32767
4	5	IED_ANALOG 4	F	-100.000	-32767
5	6	IED_ANALOG 5	F	-100.000	-32767
6	7	IED_ANALOG 6	F	-100.000	-32767
7	8	IED_ANALOG 7	F	-100.000	-32767
8	9	IED_ANALOG 8	F	-100.000	-32767
9	10	IED_ANALOG 9	F	-100.000	-32767
10	11	IED_ANALOG 10	F	-100.000	-32767
11	12	IED_ANALOG 11	F	-100.000	-32767
12	13	IED_ANALOG 12	F	-100.000	-32767
13	14	IED_ANALOG 13	F	-100.000	-32767
14	15	IED_ANALOG 14	F	-100.000	-32767
15	16	IED_ANALOG 15	F	-100.000	-32767
					Back

11.4.26 Point

Protocol logical point number.

11.4.27 Reg

Reflects the register chosen during Configuration.

11.4.28 Point Name

The name of the point assigned during configuration.

11.4.29 Point State

Please see the Config@WEB Secure Software Users Guide.

11.4.30 Point Value

The engineering unit (EGU) value.

11.4.31 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are

on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

11.4.31.1 Status Inputs

From the Symax IED Display screen, click View for Status Inputs to get the screen shown in Figure 2-25.

Figure 11-15	Symax Status	Inputs Display
--------------	--------------	----------------

			Symax Status Inputs Display			
Port # : 1	L				rt Name : RTU to	
IED # : 1			Page1 of 2 Go To Go	11	ED Name : SY_I Next>>	ED_I
	_					
Point	Reg	Bit	Point Name	Point Status	Point State	•
-1	-1	0	COMM_STS		CLOSE	•
0	2400	1	IED_STS 0	F	OPEN	•
1	2400	6	IED_STS 1	F	OPEN	•
2	2400	2	IED_STS 2	F	OPEN	•
3	2400	1	IED_STS 3	F	OPEN	•
4	2400	0	IED_STS 4	F	OPEN	•
5	2400	0	IED_STS 5	F	OPEN	•
6	2400	0	IED_STS 6	F	OPEN	•
7	2400	0	IED_STS 7	F	OPEN	•
8	2400	0	IED_STS 8	F	OPEN	•
9	2400	0	IED_STS 9	F	OPEN	•
10	2400	0	IED_STS 10	F	OPEN	•
11	2400	0	IED_STS 11	F	OPEN	•
12	2400	0	IED_STS 12	F	OPEN	•
13	2400	0	IED_STS 13	F	OPEN	•
14	2400	0	IED_STS 14	F	OPEN	•
					Back	

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not this IED is in good communications. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

11.4.32 Point

Protocol logical point number.

11.4.33 Reg

Reflects the register chosen during Configuration.

11.4.34 Bit

Reflects the Bit chosen during Configuration.

11.4.35 Point Name

The name of the point assigned during configuration.

11.4.36 Point State

Please see the Config@WEB Secure Software Users Guide.

11.4.37 Point State

Indicates that point is either OPEN or CLOSED.

11.4.38 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

11.4.38.1 Accumulator Inputs

From the Symax IED Display screen, click View for Accumulators to get the screen shown in Figure 2-26.

Symax Accumulators Display						
Port # : 1	1			Port Na	me : RTU to IED	
		Page1 of 2	Go To Go		Next>>	
Pnt	Reg	Point Name		Point Status	Count	
0	1200	IED_ACC 0		F	0	
1	1200	IED_ACC 1		F	0	
2	1200	IED_ACC 2		F	0	
3	1200	IED_ACC 3		F	0	
4	1200	IED_ACC 4		F	0	
5	1200	IED_ACC 5		F	0	
6	1200	IED_ACC 6		F	0	
7	1200	IED_ACC 7		F	0	
8	1200	IED_ACC 8		F	0	
9	1200	IED_ACC 9		F	0	
10	1200	IED_ACC 10		F	0	
11	1200	IED_ACC 11		F	0	
12	1200	IED_ACC 12		F	0	
13	1200	IED_ACC 13		F	0	
14	1200	IED_ACC 14		F	0	
15	1200	IED_ACC 15		F	0	
					Back	

Figure 11-16 Symax Counter Inputs Display

11.4.39 Pnt

Protocol logical point number.

11.4.40 Reg

Reflects the register chosen during Configuration.

11.4.41 Point Name

The name of the point assigned during configuration.

11.4.42 Point State

Please see the Config@WEB Secure Software Users Guide.

11.4.43 Count

The accumulated count.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

11.4.43.1 Analog Outputs

From the Symax IED Display screen, click View for Analog Outputs to get the screen shown below.

.

Symax Analog Outputs Display						
Port	#:1				Port Na	me : RTU to IED
		Page1 of 1	Go To	Go		
Pnt	Reg	Point Name		Point Status	Point Value	Point Counts
0	1800	IED_AO_ 0			-100.000	0
1	1801	IED_AO_ 1			-100.000	0
2	1802	IED_AO_ 2			-100.000	0
3	1803	IED_AO_ 3			-100.000	0
4	1804	IED_AO_ 4			-100.000	0
5	1805	IED_AO_ 5			-100.000	0
6	1806	IED_AO_ 6			-100.000	0
7	1807	IED_AO_ 7			-100.000	0
8	1808	IED_AO_ 8			-100.000	0
9	1809	IED_AO_ 9			-100.000	0
10	1810	IED_AO_ 10			-100.000	0
11	1811	IED_AO_ 11			-100.000	0
-	-	-		-	-	-
-	-	-		-	-	-
-	-	-		-	-	-
-	-	-		-	-	-
						Back

11.4.44 Point

Protocol logical point number.

11.4.45 Reg

Reflects the register chosen during Configuration.

11.4.46 Point Name

The name of the point assigned during configuration.

11.4.47 Point State

Please see the Config@WEB Secure Software Users Guide.

11.4.48 Point Value

The engineering unit (EGU) value.

11.4.49 Point Counts

The number of counts.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

12 L&N C2100H Master

12.1 **Serial Comm Port Configuration**

is a protocol that communicates between the RTU and an IED. It can be used to front-end an existing RTU in order to add new communication functionality within the substation while preserving the existing hardware I/O.

The protocol running on an RTU can also be used at the master station as a front-end processor scanning multiple RTUs and converting the data to a different protocol.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click from the Protocol drop-down menu as shown.

IRQsNameIRQsRTU to IEDQ6Port 2Port 3Port 4	None - RTU-IED - 2179 Arbiter	~	Configure Protocol Port 01 Port 02	Point Operations Configure		ort Copy
Q6 Port 2 Port 3	None - RTU-IED - 2179 Arbiter	~		Configure -		
Q6 Port 3	- RTU-IED - 2179 Arbiter	^	Port 02	-		
Port 3	2179 Arbiter	1				Сору
Port 4			Port 03	· .		Сору
	C2020(M)		Port 04	•		Сору
Port 5	C2100H(M) DNPM		Port 05	•		Сору
Port 6	Electran		Port 06	•		Сору
Port 7	Harris (M)		Port 07	•		Сору
Port 8	JEM2 ASCII	=	Port 08	•		Сору
Port 9	Modbus(M) Quantum		Port 09	•		Сору
Port 10	SEL		Port 10	•		Сору
Port 11	Symax		Port 11	•		Сору
Port 12	Tickle Transdata		Port 12	· .		Сору
ns Config	Tunnel - MTU-RTU -				(Back
	C2100H CDC I CDC II DNPR FM Harris (R) IDLC					
	Q6 V Port 6 Port 7 Port 8 Port 9 Port 10 Port 11 Port 12	Port 6 Electran Port 7 Harris (M) Port 8 JEM2 ASCII Port 9 Modbus(M) Q6 ♥ Port 10 Port 11 SEL Port 12 Series V(M) ns Config ns Config	Q6 ▼ Port 6 Port 7 Harris (M) Port 8 JEN2 ASCII Port 9 JEM2 ASCII Port 10 SEL Series V(M) Symax Tickle Transdata Tunnel - MTU-RTU - 8979 C2100H CDC I CDC II DNPR FM Harris (R) IDL IDL	Port 6 Port 06 Port 7 Electran Port 8 FTI Port 9 Port 08 Port 10 Series V(M) Q6 ♥ Port 10 Port 11 Symax Port 12 Transdata Tunnel MTU-RTU- 8979 C2100H CDC I CDC I CDC I DNPR FM Harris (R) IDNPR FM Harris (R) IDLC ISN ISN	Port 6 Port 7 Port 8 Port 9 Port 10 Q6 v Port 9 Port 10 Series V(M) Symax Tickle Transdata Tunnel MTU-RTU- 8979 C2100H CDC I DNR FM Harris (R) IDLC	Port 6 Port 7 Port 06 Port 07 Port 07

Figure 12-1 Communication Port Configuration

Communication Port Configuration

Port number 2. I. I

Physical Port number of the RTU.

12.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

12.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

12.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

12.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

12.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit P	ort l	Name	
Name	Port	1	
		Cancel	Submit

12.1.4 Protocol

From the drop-down list, select the protocol for this port.

12.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

12.1.6 Point Operations

Click this button to assign points.

12.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

12.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

12.2 **Configure Protocol, Serial Comm**

Under the heading Configure Protocol, click Port *n*. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Figure 12-2 Communication Channel Configuration	
L&N C2100H(M) Communication Channel Setup	

N C2100H(M) Communic	cation channel setup
Port #: 1 Port	Name : RTU to IED
Number of IEDs	2
Baud Rate *	1200 💌
Parity *	None 💌
CTS Delay*	25 (ms)
Rx Timeout *	2000 (ms)
Tx Timeout	5000 (ms)
B4 Time *	10 (ms)
Modem Turn Off Time *	0 (ms)
Hardware CTS	⊙No OYes
Hardware DCD	⊙No OYes
Midtransmission MARK	2 (bytes)
Select Timeout	10 (sec)
Idle Time	1000 (ms)
Retries	3
	Cancel Submit
	Port # : 1 Port Number of IEDs Baud Rate * Parity * CTS Delay * Rx Timeout * Tx Timeout B4 Time * Modem Turn Off Time * Hardware CTS Hardware DCD Midtransmission MARK Select Timeout Idle Time

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

12.2.1 Number of IEDs (0-32)

Enter the number of IEDs on the port. The default setting is 0.

12.2.2 Baud Rate (300 – 19200)

Select the communications speed for the associated channel. Default setting is 1200.

12.2.3 Parity (None, Odd, Even)

From the drop-down menu, select the parity for the associated channel. The default setting is None.

12.2.4 CTS Delay (0 – 1000ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 25.

12.2.5 Rx Timeout (0 – 30,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. Default setting is 2000 (2 seconds).

12.2.6 Tx Timeout (0 – 30,000ms)

Enter the transmit timeout for the associated channel. This value limits the maximum transmission time from the RTU to the master. Default setting is 5000 (5 seconds).

12.2.7 B4 Time (0 – 250ms)

Enter the B4 time for the associated channel. The B4 time is the length of quiet time required on the channel following a transmission from the RTU prior to turning on the RTUs receive interrupts. Default setting is 10.

12.2.8 Modem Turn Off Time (0 – 250ms)

Enter the time delay after the last transmitted byte before turning off the modem. Default setting is 0.

12.2.9 Hardware CTS (No, Yes)

If the hardware Clear-To-Send option is selected for a channel, then reply data bytes will not be transmitted unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. Default setting is No.

12.2.10 Hardware DCD (No, Yes)

If the hardware data carrier detect option is selected for a channel, then the channel communications driver will accept requested message data frames only if carrier is detected by the modem. If carrier is not detected, the data frames are discarded. Default setting is No.

12.2.11 Midtransmission MARK (0 – 255 bytes)

Enter the number of 8 bit marks to be transmitted between data blocks 8 and 9 of transmissions longer than 8 blocks. Default is 2.

12.2.12 Select Timeout (1 – 25 sec)

Enter the time in seconds that an SBO Select will be armed. Default is 10.

12.2.13 Idle Time (1 – 25,000 ms)

Enter the number of milliseconds to delay between polling messages to IEDs. Default is 1000.

12.2.14 Retries (1-25)

Enter the number of retries on poll messages before marking the data from that IED as failed. Default is 3.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

12.3 **Point Operations**

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

L&N C2100H(M) IED Configuration									
Port # :	1			Port Nar	ne : RTU to IED				
IED #	IED Name	IED Address	On Scan	Slave Config	Copy to IEDn				
1	CHM_IED_1	1	Y	Edit	Сору				
2	CHM_IED_2	2	Y	Edit	Сору				
	IED #2 Configura	ition			X				
	IED Name		C	HM_IED_2					
	IED Address		2						
	On Scan *		0	Yes Ot	No Set				

Figure 1	2-3 IED	Configuration
----------	---------	---------------

12.3.1 IED

The logical number of the IED on this communication channel.

12.3.2 IED Name

Click on the IED Name. A pop-up window called IED Configuration will appear, as shown above.

12.3.2.1 IED Name

The name of the IED. Type in a name, or accept the default.

12.3.2.2 IED Address

The address of the IED. Type in an address, or accept the default.

12.3.2.3 On Scan

Determines whether or not the IED is being scanned. Click No to disable the scan, or accept the default (Yes).

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

12.3.2.4 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

12.3.3 IED Address

Reflects the entry in the pop-up menu. See above.

12.3.4 On Scan

Reflects the entry in the pop-up menu. See above.

12.3.5 Slave Config

Click the Edit button to edit the IED points.

12.3.6 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

12.3.6.1 Slave Configuration Edit

12.3.7 Slave Config

Click Edit to continue. A screen similar to Figure 2-10 will appear.

		8	ε			
		L&N C2100H	Configuration	n		
Port # : 1 IED # : 1			Status Sele		Name : RT IAME : CHN	
	Config	gure Sections		Туре		Edit
Section 1A		Section 9A	ACC 💌	Analog Inputs		Edit
Section 1B	ANA 💌	Section 9B	None 🗸	Status Inputs		Edit
Section 2A	STS 💌	Section 10A	ACC 🔽	Accumulators		Edit
Section 2B	STS 💌	Section 10B	None 💙	Raise/Lower	No 💌	Edit
Section 3A	ANA 💌	Section 11A	ACC 💌	Analog Outputs	No 🗸	Edit
Section 3B	ANA 💌	Section 11B	None 💙	SBO	No 🗸	Edit
Section 4A	ANA 💌	Section 12A	ACC 💌			
Section 4B	ANA 💌	Section 12B	None 💙			
Section 5A	ANA 💌	Section 13A	SM 💌			
Section 5B	ANA 💌	Section 13B	SMA 💌			
Section 6A	None 💌	Section 14A	None 💌			
Section 6B	None 💌	Section 14B	None 💌			
Section 7A	None 💌	Section 15A	None 💌			
Section 7B	None 💌	Section 15B	None 💌			
Section 8A	None 💌	Section 16A	None 💌			
Section 8B	None ANA	Section 16B	None 💌			
	STS			(Cancel	Submit
	ACC BCD	_				

Figure 12-4 IED Configuration

12.3.8 Status Select, Pass/Group, or Pass

12.3.8.1 Status Select 1 or 2

Select Status Select 1 or 2 to edit what types of points are to be included in the response message.

12.3.8.2 Pass/Group 1 through 4

Select Pass/Group 1 through 4 to edit what types of points are to be included in the response message. Raise/Lower, Analog outputs, and SBO points may be mapped only in groups 1-4.

12.3.8.3 Pass 5 through 12

Select Pass 5 through 12 to edit what types of points are to be included in the response message.

12.3.9 Configure Sections

12.3.9.1 ANA

Analog Inputs, 12-bit. Uses one section. See Analog Inputs MAP function.

12.3.9.2 STS

Status, 1-bit. Twelve status points will fit in one section. See Status Inputs MAP function.

12.3.9.3 ACC

Block is an accumulator. This is valid only in the 1st data block as required by the protocol. It uses both the 1st and 2nd data blocks to return a 24 bit value in binary format. The 1st data block contains the most significant 12 bits and the 2nd data block contains the least significant 12 bits.

12.3.9.4 BCD

Block is an accumulator. This is valid only in the 1st data block as required by the protocol. It uses both the 1st and 2nd data blocks to return 6 BCD digits. The 1st data block contains the most significant 3 BCD digits and the 2nd data block contains the least significant 3 BCD digits.

12.3.10 Type

The different types of I/O points supported by this protocol.

12.3.11 Edit

Click the Edit button to configure the point types for this group.

Please note: No configuration changes take effect until the RTU is reset.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

12.3.12 IED Analog Configuration

From the IED Configuration screen, click on Edit for Analog Inputs. A screen similar to Figure 2-13 will appear.

			Figure 12-5 Analog	g Input C	Configuration		
			L&N C2100H	Config	uration		
Port #:3				Sta	tus Select 1 💌	Port N	lame : Port 3
IED # : 1						IED NAME :	CHM_IED_1
		c	2100H(M) Analog	Input	Configuration	n	
	Sect	Point	Name		EGU Min	EGU Max	
	1 B	1	CHIED_ANA_1		0	4095	
	2 A	1	CHIED_ANA_2	Clic	k on Header to	4095	
	2 B	1	CHIED_ANA_3		nge All	1095	
	3 A	1	CHIED_ANA_4	valu	nge All	× 1095	
	3 B	1	CHIED_ANA_5			1095	
	4 A	1	CHIED_ANA_6	and/	or change	4095	
	4 B	1	CHIED_ANA_7		0	4095	
	5 A	1	CHIED_ANA_8		0	4095	
	5 B	1	CHIED_ANA_9		0	4095	
						Done	

Figure 12.5 Analog Input Configuration

12.3.13 Sect

Protocol logical section number. This number cannot be changed.

12.3.14 Point

Protocol logical point number. This number cannot be changed.

12.3.15 Name

Enter the name of the point (or accept the default name).

12.3.16 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

12.3.17 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Navigation

Port #: n tells you which port you are on. Port Name : name tells you the name of the port. IED #: n tells you which IED you are on. IED Name : name tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable.

Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

12.3.18 IED Status Configuration

From the IED Configuration screen, click on Edit for Status. A screen similar to Figure 2-14 will appear.

Figure 12-6 Status Input Configuration (Section A)

	L&N C2100H Configuration	
Port # : 4	Status Select 1 💌	Port Name : Port 4
IED # : 1		IED NAME : CHM_IED_1
	C2100H(M) Status Configuration	

		Page 1 of 4 GoTo GO	Next >>
Sec	Point	Name	MCD
2 A	1	CHIED_STS_2_1	🔾 Yes 💿 No
2 A	2	CHIED_STS_2_2	⊙Yes ○No
2 A	3	CHIED_STS_2_3	🔿 Yes 💿 No
2 A	4	CHIED_STS_2_4	⊙Yes ○No
2 A	5	CHIED_STS_2_5	🔿 Yes 💿 No
2 A	6	CHIED_STS_2_6	🔾 Yes 💿 No
2 A	7	CHIED_STS_2_7	🔾 Yes 💿 No
2 A	8	CHIED_STS_2_8	🔾 Yes 💿 No
2 A	9	CHIED_STS_2_9	🔾 Yes 💿 No
2 A	10	CHIED_STS_2_10	🔾 Yes 💿 No
2 A	11	CHIED_STS_2_11	🔾 Yes 💿 No
2 A	12	CHIED_STS_2_12	⊙Yes ○No

12.3.19 Sec

Protocol logical section number. This number cannot be changed.

12.3.20 Point

Protocol logical point number. This number cannot be changed.

12.3.21 Name

Enter the name of the point (except for COMM_STS which can not be changed) or accept the default name.

Done

12.3.22 MCD (Multiple Change Detect)

Click Yes to make any point a status-with-memory point. The point following then becomes the memory bit and is disabled. The last point in section A can be an MCD point, and its corresponding memory bit becomes the first element of the following B section. But as shown below, the last point in a B section cannot be defined as a status-with-memory point.

Figure 12-7 Status Input Configuration (Section B)
--

Port # : 4 IED # : 1		L&N C2100H Configuration Status Select 1	Port Name : Port 4 IED NAME : CHM_IED_1
		C2100H(M) Status Configuration	
<< Pre	vious	Page 2 of 4 GoTo GO	Next >>
Sec	: Point	Name	MCD
2 B	1	CHIED_STS_3_1	🔿 Yes 💿 No
2 B	2	CHIED_STS_3_2	OYes ⊙No
2 B	3	CHIED_STS_3_3	⊙Yes ○No
2 B	4	CHIED_STS_3_4	🔿 Yes 💿 No
2 B	5	CHIED_STS_3_5	OYes ⊙No
2 B	6	CHIED_STS_3_6	OYes ⊙No
2 B	7	CHIED_STS_3_7	⊙Yes ○No
2 B	8	CHIED_STS_3_8	🔿 Yes 💿 No
2 B	9	CHIED_STS_3_9	⊙Yes ○No
2 B	10	CHIED_STS_3_10	🔿 Yes 💿 No
2 B	11	CHIED_STS_3_11	⊙Yes ○No
2 B	12	CHIED_STS_3_12	
			Done

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

12.3.23 IED Accumulators Configuration

From the IED Configuration screen, click on Edit for Accumulator Inputs. A screen similar to Figure 2-15 will appear.

Figure 12-8 Accumulators Configuration

	L	&N C21	00H Configuration	
Port # : 3			Status Select 1 🔽	Port Name : Port 3
IED # : 1				IED NAME : CHM_IED_1
	C2100H	(M) Acc	umulators Configuration	
	Sect	Point	Name	
	10A	1	CHIED_ACC_10	
	12A	1	CHIED_ACC_12	
	14A	1	CHIED_ACC_14	
	16A	1	CHIED_ACC_16	
			Done	

12.3.24 Sect

Protocol logical section number. This number cannot be changed.

12.3.25 Point

Protocol logical point number. This number cannot be changed.

12.3.26 Name

Enter the name of the point or accept the default name.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

12.3.27 IED Raise/Lower Configuration

Click on Edit for Raise/Lower. A screen similar to Figure 2-17 will appear.

Figure 12-9 Digital Outputs Configuration

	L&N (C2100H Configuration		
Port #:2				Port Name : Port 2
IED # : 1				IED NAME : CHM_IED_1
C210	00H(M)	Digital Output Configur	ation	
	Pa	age 1 of 2 GoTo GO	Next≻≻	
	Seq	Name		
	1 - R	CHIED_1 - R		
	1 - L	CHIED_1 - L]	
	2 - R	CHIED_2 - R]	
	2 - L	CHIED_2 - L		
	3 - R	CHIED_3 - R		
	3 - L	CHIED_3 - L		
	4 - R	CHIED_4 - R]	
	4 - L	CHIED_4 - L]	
	5-R	CHIED_5 - R]	
	5 - L	CHIED_5 - L]	
	6-R	CHIED_6 - R]	
	6-L	CHIED_6 - L]	
	7 - R	CHIED_7 - R]	
	7 - L	CHIED_7 - L]	
	8 - R	CHIED_8 - R]	
	8 - L	CHIED_8 - L]	
		Done]	

12.3.28 Seq

Protocol logical sequence number. This number cannot be changed

12.3.29 Name

Enter the name of the point (or accept the default name)

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

12.3.30 IED Analog Outputs Configuration

Click on Edit for Analog Outputs. A screen similar to the one below will appear.

Figure 12-10 Analog Outputs Configuration

		Figure 12-10 Analog Out	puts Configuration	n	
		L&N C2100H Col	nfiguration		
Port # : 3 IED # : 1			Pass/Group 2		Port Name : Port 3 AME : CHM_IED_1
		C2100H(M) Analog Out	put Configura	ation	
	Point	Name	EGU Min	EGU Max	
	1	CHIED_AO_1	0	4095	
	2	CHIED_A0_2	c on Header to	4095	
	3		nge All	095	
	4	CHIED AO 4	ige All X e Set	095	
	5	CHIED_AO_5	e <u> </u>	095	
	6	CHIED_AO_6 and/	or change	4095	
	7	CHIED_AO_7	0	4095	
	8	CHIED_AO_8	0	4095	
	9	CHIED_AO_9	0	4095	
	10	CHIED_AO_10	0	4095	
	11	CHIED_AO_11	0	4095	

Done

4095

12.3.31 Point

12

Protocol logical point number. This number cannot be changed

12.3.32 Name

Enter the name of the point (or accept the default name)

CHIED_AO_12

12.3.33 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

0

12.3.34 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Ρ IE

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

12.3.35 IED SBO Configuration

Click on Edit for SBO. A screen similar to the one below will appear.

Figure 12-11 SBO Configuration

		L&N C2100H Co	onfigui	atio	n	
Port # : 3			Pass/	Group	o 2 💌	Port Name : Port 3
IED # : 1			_			IED NAME : CHM_IED_1
		C2100H(M) SBO	Config	ura	tion	
	Point	Name		E	xecute Time	
	1	CHIED_SBO_1			500	
	2	CHIED_SBO_2	Cli	ck on	Header to	
	3	CHIED_SBO_3	Cha	inge	All	_
	4	CHIED_SBO_4		inge i	All >	
	5	CHIED_SBO_5		le		
	6	CHIED_SBO_6	and	/or c	hange	
	7	CHIED_SBO_7			50	
	8	CHIED_SBO_8			500	
	9	CHIED_SBO_9			500	
	10	CHIED_SBO_10			500	
	11	CHIED_SBO_11			500	
	12	CHIED_SBO_12			500	
					Done	

12.3.36 Point

Protocol logical point number. This number cannot be changed

12.3.37 Name

Enter the name of the point (or accept the default name)

12.3.38 Execute Time

Enter the Execute Time (or accept the default)

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

12.4 Data Display

Click the Data Display tab as shown in Figure 2-18.

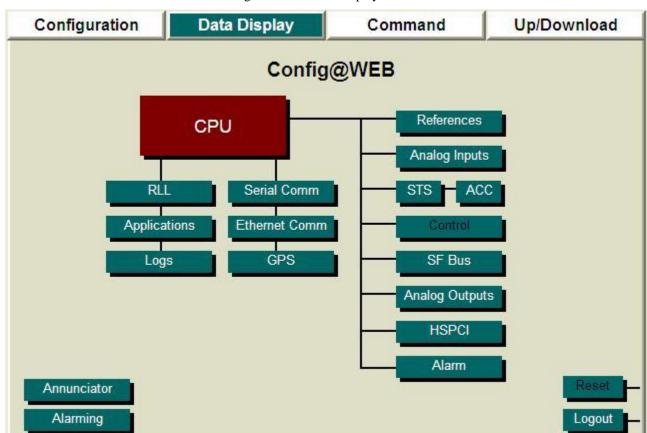


Figure 12-12 Data Display Screen

Display Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	К	К	RTU to IED	C2100H(M)	View	Port Data
Port #2	К	К	Port 2	None	View	Port Data
Port #3	К	К	Port 3	None	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port #5	К	К	Port 5	None	View	Port Data
Port #6	К	К	Port 6	None	View	Port Data
Port #7	К	К	Port 7	None	View	Port Data
Port #8	К	К	Port 8	None	View	Port Data
Port #9	К	К	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port #11	К	К	Port 11	None	View	Port Data
Port #12	К	К	Port 12	None	View	Port Data
Communicat	tion Ass	ociation	s Config			Back

Figure 12-13 Display Communication Port Data

12.4.1 Port Number

Physical Port number of the RTU.

12.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

12.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

12.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

12.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

12.4.3 Name

The port name given during configuration or default name accepted.

12.4.4 Protocol

The configured protocol for this port.

12.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

12.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

12.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

12.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

C2	C2100H(M) Communication Counters Display						
Port # : 1		Port Name : Port 1					
Point	Counter Name	Counts					
1	Messages Received	0					
2	Messages Sent	0					
3	B4 Timer Violations	0					
4	BCH Security Errors	0					
5	Overrun Errors						
6	Framing Errors	0					
7	Hardware DCD Errors	0					
8	Hardware CTS Errors	0					
Data Trap	Configure						
		Back					

12.4.9 Point

A logical point number for reference only.

12.4.10 Counter Name

The following counters are monitored:

12.4.10.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

12.4.10.2 Messages Received

This indicates the cumulative number of received messages since the last reset or power-up.

12.4.10.3 B4 Timer Violations

This indicates the cumulative number of B4 Timer violations. This count can be affected by the setting of the B4 Time in configuration.

12.4.10.4 BCH Security Errors

This indicates the cumulative number of BCH security errors since the last reset or power-up.

12.4.10.5 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

12.4.10.6 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

12.4.10.7 Hardware DCD Errors

This indicates the cumulative number of DCD errors since the last reset or power-up.

12.4.10.8 Hardware CTS Errors

This indicates the cumulative number of CTS errors since the last reset or power-up.

12.4.11 Counts

The counts for each type of Counter.

12.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

12.4.13 Display Port Data

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

L&N C2100H(M) IED Display						
Port # 1 Port Name : RTU to IE						
IED #	IED Name	IED Address	On Scan	Slave Data		
1	CHM_IED_1	1	Y	View		
2	CHM_IED_2	2	Y	View		
				Back		

Figure 12-15 IED Display

12.4.14 IED

The logical number of the IED on this communication channel.

12.4.15 IED Name

The name that was chosen, or accepted as default, during configuration.

12.4.16 IED Address

The IED Address chosen during configuration.

12.4.17 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

12.5 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

From the IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

C2100H(M) IED Display Port # : 2 Port Name : Por IED #: 1 IED Name : CHM_IED					
Туре	Number	View			
Analog Inputs	4	View			
Status Inputs	49	View			
Accumulators	5	View			
Analog Outputs	12	View			
Digital Outputs	24				
SBO Outputs	12				
		Back			

Figure 12-16 IED Display

12.5.1 Type

The type of point.

12.5.2 Number

The number of points from your IED.

12.5.3 View

Click the View button to view points.

12.6 Analog Inputs

From the IED Display screen, click View for Analog Inputs to get the screen shown in Figure 2-24.

Figure 12-17 Analog Inputs Display

		C2100H(M) Analog Inputs Dis	play		
Port # : 1 IED # : 1					ame : RTU to IED ame : CHM_IED_1
		Page1 of 1 Go To	Go		
Pass	Sect	Point Name	Point Status	Point Value	Point Counts
SS1	1B	CHIED_ANA_1	F	0.000	0
SS1	ЗA	CHIED_ANA_4	F	0.000	0
SS1	3B	CHIED_ANA_5	F	0.000	0
SS1	4A	CHIED_ANA_6	F	0.000	0
SS1	4B	CHIED_ANA_7	F	0.000	0
SS1	5A	CHIED_ANA_8	F	0.000	0
SS1	5B	CHIED_ANA_9	F	0.000	0
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	
-	-	-	-	-	
-	-	•	-	-	
					Back

12.6.1 Pass

Protocol logical Pass/Group number:

- SS1-2 Status Select 1 and 2
- P1-12 Pass/Group 1 thru 4 and Pass 5 thru 12

12.6.2 Sect

Protocol logical section number.

12.6.3 Point Name

The name of the point assigned during configuration.

12.6.4 Point State

Please see the Config@WEB Secure Software Users Guide.

12.6.5 Point Value

The engineering unit (EGU) value.

12.6.6 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

12.7 Status Inputs

From the IED Display screen, click View for Status Inputs to get the screen shown in Figure 2-25.

Figure 12-1	8	Status	Inputs	Display
	~	States	inp ares	2100100

C2100H(M) Status Inputs Display						
Port # : 1 IED # : 1	L				rt Name : RTU to D Name : CHM_I	
			Page1 of 2 Go To Go			ext>>
Pass	Sect	Point	Point Name	Point Status	Point State	•
		0	CHM_COMM_STS		CLOSE	•
SS1	2A	1	CHIED_STS_2_1	F	OPEN	•
SS1	2A	2	CHIED_STS_2_2	F	OPEN	•
SS1	2A	3	CHIED_STS_2_3	F	OPEN	•
SS1	2A	4	CHIED_STS_2_4	F	OPEN	•
SS1	2A	5	CHIED_STS_2_5	F	OPEN	•
SS1	2A	6	CHIED_STS_2_6	F	OPEN	•
SS1	2A	7	CHIED_STS_2_7	F	OPEN	•
SS1	2A	8	CHIED_STS_2_8	F	OPEN	•
SS1	2A	9	CHIED_STS_2_9	F	OPEN	•
SS1	2A	10	CHIED_STS_2_10	F	OPEN	•
SS1	2A	11	CHIED_STS_2_11	F	OPEN	•
SS1	2A	12	CHIED_STS_2_12	F	OPEN	•
SS1	2B	1	CHIED_STS_3_1	F	OPEN	•
SS1	2B	2	CHIED_STS_3_2	F	OPEN	•
SS1	2B	3	CHIED_STS_3_3	F	OPEN	•
					Ba	ack

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not this IED is in good communications. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

12.7.1 Pass

Protocol logical Pass/Group number:

- SS1-2 Status Select 1 and 2
- P1-12 Pass/Group 1 thru 4 and Pass 5 thru 12

12.7.2 Sect

Protocol logical section number.

12.7.3 Point

Protocol logical point number.

12.7.4 Point Name

The name of the point assigned during configuration.

12.7.5 Point State

Please see the Config@WEB Secure Software Users Guide.

12.7.6 Point State

Indicates that point is either OPEN or CLOSED.

12.7.7 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

12.8 Accumulator Inputs

From the IED Display screen, click View for Accumulators to get the screen shown in Figure 2-26.

Figure 12-19 Counter Inputs Display

Port # : 1			C2100H(M) Accumu	lator Inputs Display	Port Na	me : RTU to IED
IED # : 1			Page1 of 1	Go To Go	IED Na	me : CHM_IED_1
Pass	Sect	Point	Point	Name	Point Status	Count

Pass	Sect	Point	Point Name	Status	Count
SS1	9A	1	CHIED_ACC_16	F	0
SS1	10A	1	CHIED_ACC_18	F	0
SS1	11A	1	CHIED_ACC_20	F	0
SS1	12A	1	CHIED_ACC_22	F	0
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
-	-	-	-		-
					Back

12.8.1 Pass

Protocol logical Pass/Group number:

SS1-2 Status Select 1 and 2

P1-12 Pass/Group 1 thru 4 and Pass 5 thru 12

12.8.2 Sect

Protocol logical section number.

12.8.3 Point

Protocol logical point number.

12.8.4 Point Name

The name of the point assigned during configuration.

12.8.5 Point State

Please see the Config@WEB Secure Software Users Guide.

12.8.6 Count

The accumulated count.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

12.9 Analog Outputs

From the IED Display screen, click View for Analog Outputs to get the screen shown below.

Figure	12 - 20	Analog	Outputs	Display
1 iguit	12 20	maios	Outputs	Display

C2100H(M) Analog Outputs Display Port # : 3 Port # : 3 IED # : 1 IED Name : CHM_IED_					
		Page1 of 2 Go To	Go	Next>>	
Group	Point	Point Name	Point Status	Point Value	
1	0	CHIED_AO_1	F	0.000	
1	1	CHIED_AO_2	F	0.000	
1	2	CHIED_AO_3	F	0.000	
1	3	CHIED_AO_4	F	0.000	
1	4	CHIED_AO_5	F	0.000	
1	5	CHIED_AO_6	F	0.000	
1	6	CHIED_AO_7	F	0.000	
1	7	CHIED_AO_8	F	0.000	
1	8	CHIED_AO_9	F	0.000	
1	9	CHIED_AO_10	F	0.000	
1	10	CHIED_AO_11	F	0.000	
1	11	CHIED_AO_12	F	0.000	
				Back	

12.9.1 Group

Protocol logical Group number:

12.9.2 Point

Protocol logical point number.

12.9.3 Point Name

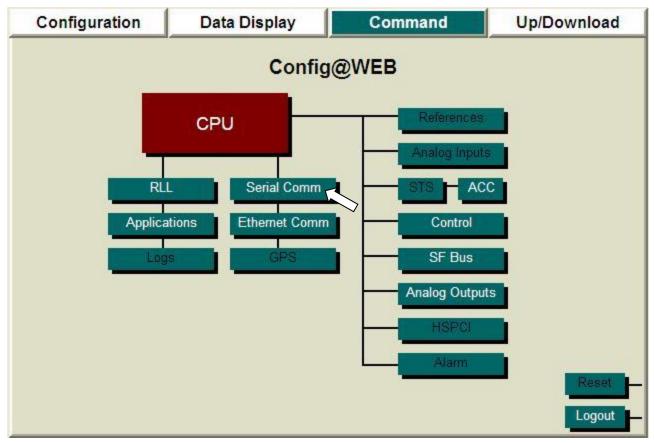
The name of the point assigned during configuration.

12.9.4 Point State

Please see the Config@WEB Secure Software Users Guide.

12.9.5 Point Value

The engineering unit (EGU) value.


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

12.10 Command Serial Comm

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

Figure 12-21 Command Tab Page

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2300 manual. Under Command Port Data, click Port Data.

Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode
Port #1	К	К	RTU to IED	C2100H(M)	Port Data	Normal 💌
Port #2	К	К	Port 2	None	Port Data	Normal 🔽
Port #3	К	К	Port 3	None	Port Data	Normal 😪
Port #4	К	К	Port 4	None	Port Data	Normal 🛩
Port #5	К	К	Port 5	None	Port Data	Normal 🗠
Port #6	К	К	Port 6	None	Port Data	Normal 😪
Port #7	К	К	Port 7	None	Port Data	Normal 🛩
Port #8	К	К	Port 8	None	Port Data	Normal 🛩
Port #9	К	К	Port 9	None	Port Data	Normal 😪
Port #10	К	К	Port 10	None	Port Data	Normal 🛩
Port #11	К	К	Port 11	None	Port Data	Normal 🛩
Port #12	К	ĸ	Port 12	None	Port Data	Normal 😪

Figure 12-22 Serial Comm Command Communications Port Data

The resultant screen will be similar to Figure 2-31. Click on the Command button.

L&N C2100H(M) IED Command					
Port # 1 Port Name : RTU to IEI					
IED #	IED Name	IED Address	On Scan	Slave Data	
1	CHM_IED_1	1	Y	Command	
2	CHM_IED_2	2	Y	Command	
				Back	

Figure 12-23 IED Command

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command various outputs.

C2100H(M) IED Command					
Port # : 2 IED # : 1		ort Name : Port 2 ame : CHM_IED_1			
Type Number Command					
Analog Inputs	4				
Status Inputs	49				
Accumulators	5				
Analog Outputs	12	Command			
Digital Outputs	24	Command			
SBO Outputs	12	Command			
		Back			

Figure 12-24 IED Command

Click on the Analog Outputs Command button. The resulting screen will look like Figure 10-21. Type in a value for the chosen AO channel, then click the Execute button. The output channel will be driven to that value.

Figure 12-25	Analog Outputs Command
--------------	------------------------

Port # : : IED # : 2	3	C2100H(M) An Page 1 of 1	Go To Go	Por IED Nam	t Name : Port 3 ie : CHM_IED_2		
Group	Point	Name	Range	Value	Operation		
1	0	CHIED_AO_1	0.000 to 4095.000	2000.000	Execute		
1	1	CHIED_AO_2	0.000 to 4095.000	0.000	Execute		
1	2	CHIED_AO_3	0.000 to 4095.000	0.000	Execute		
1	3	CHIED_AO_4	0.000 to 4095.000	0.000	Execute		
1	4	CHIED_AO_5	0.000 to 4095.000	0.000	Execute		
1	5	CHIED_AO_6	0.000 to 4095.000	0.000	Execute		
1	6	CHIED_AO_7	0.000 to 4095.000	0.000	Execute		
1	7	CHIED_AO_8	0.000 to 4095.000	0.000	Execute		
1	8	CHIED_AO_9	0.000 to 4095.000	0.000	Execute		
1	9	CHIED_AO_10	0.000 to 4095.000	0.000	Execute		
1	10	CHIED_AO_11	0.000 to 4095.000	0.000	Execute		
1	11	CHIED_AO_12	0.000 to 4095.000	0.000	Execute		
CHIED_A	CHIED_AO_1 : Success Back						

S2200-AAA-00004

Click on the Command button for Digital Outputs. The resulting screen will look like the figure below. Type in an execute time, then click the Execute button.

Figure 12-26 Digital Outputs Command

C2100H(M) Digital Outputs Command							
Port # : 3 IED # : 2	}			Port Name : Port 3 IED Name : CHM_IED_2			
		Page 1 of 1	GoTo	Go			
Group	Point	Name	Execute Time (ms) Point Operations			
1	1	CHIED_1 - R	500	Execute			
1	2	CHIED_1 - L	0	Execute			
1	3	CHIED_2 - R	0	Execute			
1	4	CHIED_2 - L	0	Execute			
1	5	CHIED_3 - R	0	Execute			
1	6	CHIED_3 - L	0	Execute			
1	7	CHIED_4 - R	0	Execute			
1	8	CHIED_4 - L	0	Execute			
1	9	CHIED_5 - R	0	Execute			
1	10	CHIED_5 - L	0	Execute			
1	11	CHIED_6 - R	0	Execute			
1	12	CHIED_6 - L	0	Execute			
1	13	CHIED_7 - R	0	Execute			
1	14	CHIED_7 - L	0	Execute			
1	15	CHIED_8 - R	0	Execute			
1	16	CHIED_8 - L	0	Execute			
1	17	CHIED_9 - R	0	Execute			
1	18	CHIED_9 - L	0	Execute			
1	19	CHIED_10 - R	0	Execute			
1	20	CHIED_10 - L	0	Execute			
1	21	CHIED_11 - R	0	Execute			
1	22	CHIED_11 - L	0	Execute			
1	23	CHIED_12 - R	0	Execute			
1	24	CHIED_12 - L	0	Execute			
Open on	Open on CHIED_1 - R : Successful Back						

Click on the Command button for SBO Outputs. The resulting screen will look like the one below after either a Trip or Close has been selected, then Executed with the Execute button.

Figure 12-27 SBO Outputs Command

C2100H(M) SBO Outputs Command							
Port # : 3 IED # : 2	}						ame : Port 3 CHM_IED_2
		Page 1 of 1	GoTo	G	0	ieb Name	. cnin_120_2
Group	Point	Name	Execute Time (ms	i)	Р	oint Operation	ons
1	1	CHIED_SB0_1	500]	 Trip 	O Close	Execute
1	2	CHIED_SBO_2	500]	🔿 Trip	O Close	Execute
1	3	CHIED_SBO_3	500]	🔿 Trip	O Close	Execute
1	4	CHIED_SBO_4	500]	🔿 Trip	O Close	Execute
1	5	CHIED_SBO_5	500]	🔿 Trip	O Close	Execute
1	6	CHIED_SBO_6	500]	🔿 Trip	O Close	Execute
1	7	CHIED_SB0_7	500]	🔿 Trip	O Close	Execute
1	8	CHIED_SBO_8	500]	🔿 Trip	O Close	Execute
1	9	CHIED_SBO_9	500]	🔿 Trip	O Close	Execute
1	10	CHIED_SBO_10	500]	🔿 Trip	O Close	Execute
1	11	CHIED_SB0_11	500		🔿 Trip	O Close	Execute
1	12	CHIED_SB0_12	500		🔿 Trip	O Close	Execute
Trip on	Trip on CHIED_SBO_1 : Successful Back						

13 Tunnel Function

Serial Comm Port Configuration 13.1

is a protocol that allows the user to set up a terminal emulation program on the Ethernet side of the RTU and talk directly to many devices, including Beckwith. Because this "protocol" handles only simple communications, there is no point configuration.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. From this screen, click Tunnel from the Protocol drop-down menu as shown.

Communication Port Configuration										
Port Number	RTS	DTR	Configure IRQs	Name	Protocol		Configure Protocol	Point Operations	1	Copy to Port
Port #1	К 💌	К 🛩		RTU to IED	Tunnel	*	Port 01	-		Сору
Port #2	К 💌	К 🛩	IRQ6	Port 2	None — RTU-IED —	^	Port 02	-		Сору
Port #3	К 💌	К 💌	IKQ0	Port 3	2179		Port 03	-		Сору
Port #4	К 🕶	К 🛩		Port 4	Arbiter C2020(M)		Port 04	-		Сору
Port #5	К 🕶	К 🛩		Port 5	C2100H(M) DNPM		Port 05	· .		Сору
Port #6	К 🕶	К 🛩	IRQ6 🔽	Port 6	Electran ETI		Port 06	· .		Сору
Port #7	К 🕶	К 🛩	IRQ0 Y	Port 7	Harris (M)		Port 07	· .		Сору
Port #8	К 🛩	К 🛩		Port 8	Incom JEM2 ASCII	≡	Port 08	· .		Сору
Port #9	К 🛩	К 🛩		Port 9	Modbus(M) Quantum		Port 09	· .		Сору
Port #10	К 🕶	К 🛩	IRQ6 🔽	<u>Port 10</u>	SEL		Port 10	-		Сору
Port #11	К 🛩	К 🛩	IRQ0 ¥	<u>Port 11</u>	Series V(M) Symax		Port 11	· .		Сору
Port #12	К 🕶	К 🛩		Port 12	Tickle Transdata	Port 12	· .		Сору	
Communi	cation	Associ	ations Cont	fig	Tunnel — <i>MTU-RTU</i> —					Back
					8979 C2100H CDC I CDC II DNPR FM Harris (R) IDLC					

Figure 13-1 Communication Port Configuration

13.1.1 Port Number

Physical Port number of the RTU.

13.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

316

13.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

13.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

13.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

13.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name					
Name	Name Port 1				
		Cancel	Submit		

13.1.4 Protocol

From the drop-down list, select the protocol for this port.

13.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

13.1.6 Point Operations

Click this button to assign points.

13.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

13.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

13.2 **Configure Protocol, Serial Comm**

Under the heading Configure Protocol, click Port *n*. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Tunnel Through Cor	nmunication Setu
Port # : 2	Port Name : Port 2
Protocol	Binary ASCII
Baud Rate *	9600 💌
Parity *	None 🚩
Stop Bits *	1 🚩
Rx Timeout *	500 (ms)
Tx Timeout	100 (ms)
B4 Time *	1000 (ms)
Interbyte Time *	50 (ms)
Half Duplex	⊙No ○Yes
CTS Delay *	0 (ms)
Modem Turn Off Time *	0 (ms)
Hardware CTS	⊙No ○Yes
Hardware DCD	⊙No ○Yes
TCP Port Number	8800
Session Timeout	30 (min.)
Buffer Size	1 (KBytes)
	Cancel Submit

Figure 13-2 Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Rx Timeout.

13.2.1 Protocol (Binary – ASCII)

Select the format of information that is to be tunneled. The default is Binary.

13.2.2 Baud Rate (300 – 19200)

Select the communications speed for the associated channel. Default setting is 9600.

13.2.3 Parity (None, Odd, Even)

From the drop-down menu, select the parity for the associated channel. The default setting is None.

13.2.4 Stop Bits (0, 1, 2)

Enter the Stop Bits for the associated channel. The default is 1.

13.2.5 Rx Timeout (0 – 30,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. Default setting is 500 (0.5 seconds).

13.2.6 Tx Timeout (0 – 3,000ms)

Enter the transmit timeout for the associated channel. This value limits the maximum transmission time from the RTU to the master. Default setting is 100 ms.

13.2.7 B4 Time (0 – 10,000ms)

Enter the B4 time for the associated channel. The B4 time is the length of quiet time required on the channel following a transmission from the RTU prior to turning on the RTU's receive interrupts. Default setting 1000 msec.

13.2.8 Interbyte Time (10 – 5000ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 50 msec.

13.2.9 Half Duplex (No, Yes)

Click the radio button for Yes if you want half duplex operation. This function enables the RTU to properly condition the RS-232 control lines. The CTS delay is used for carrier conditioning. In full duplex operation, the CTS signal is used for collision avoidance. In Half duplex operation, the DCD signal is used for collision avoidance and to enable the receiver. The default setting is No.

13.2.10 CTS Delay (0 – 250ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 0.

13.2.11 Modem Turn Off Time (0 – 250ms)

Enter the time delay after the last transmitted byte before turning off the modem. Default setting is 0.

13.2.12 Hardware CTS (No, Yes)

If the hardware Clear-To-Send option is selected for a channel, then reply data bytes will not be transmitted unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. Default setting is No.

13.2.13 Hardware DCD (No, Yes)

If the hardware data carrier detect option is selected for a channel, then the channel communications driver will accept requested message data frames only if carrier is detected by the modem. If carrier is not detected, the data frames are discarded. Default setting is No.

13.2.14 TCP Port Number

This is the port number for the TCP socket connection. The default setting is 8800. Each additional port must be uniquely numbered. If you configure more than one serial Tunnel port, use a unique TCP Port Numbers for each.

Note: For each Telnet session, the TCP port number in the Tunnel protocol setup and the Telnet session must match.

13.2.15 Session Timeout (1 – 1000 min.)

Enter the time delay before your Tunnel session times out. Default setting is 30 minutes.

13.2.16 Buffer Size (1 – 20 kBytes)

Enter the required buffer size. Default setting is 1 kByte.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

13.2.17 Telnet Session Host Address

There is a variation in the host address depending on whether your connection method is PPP or TCP/IP. See the following sections.

13.2.17.1 PPP Host Address

Select Winsock as the Connection method. Set the Port number to 24. If you are using PPP, enter the PPP host address of the RTU as shown below.

Connect To	? 🛛
🦓 Tunnel F	unction
Enter details for (the host that you want to call:
<u>H</u> ost address:	90.0.0.50
Port nu <u>m</u> ber:	24
Co <u>n</u> nect using:	TCP/IP (Winsock)
	OK Cancel

Figure 13-3 Connect Using Winsock & PPP Host Address

Note: For each Telnet session, the TCP port number in the Tunnel protocol setup and the Telnet session must match.

13.2.17.2 TCP/IP Host Address

Select Winsock as the Connection method. Set the Port number to 24. If you are using TCP/IP, enter the TCP/IP host address of the RTU as shown below.

Figure 1	3-4	Connect	Using	Winsock	&	TCP/I	P Host	Address
		00111000	00000		~~		11000	1 10 01 000

Connect To	? 🔀				
Tunnel Function					
Enter details for the host that you want to call:					
<u>H</u> ost address:	172.18.150.50				
Port nu <u>m</u> ber:	24				
Connect using:	TCP/IP (Winsock)				
	OK Cancel				

Note: For each Telnet session, the TCP port number in the Tunnel protocol setup and the Telnet session must match.

14 Incom

14.1 Serial Comm Port Configuration

Incom is a protocol that communicates between the RTU and an IED. It can be used to front-end an existing RTU in order to add new communication functionality within the substation while preserving the existing hardware I/O.

The Incom protocol running on an RTU can also be used at the master station as a front-end processor scanning multiple RTUs and converting the data to a different protocol.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click Incom from the Protocol drop-down menu as shown.

Communication Port Configuration					
Port Number RTS DTR Configure IRQs	Name	Protocol	Configure Protocol	Point Operations	Copy to Port
Port #1 K 💌 K 💌	<u>Port 1</u>	DNPR -	Port 01	Map Points	Сору
Port #2 K • K • IRQ6	Port 2	DNPM -	Port 02	Configure	Сору
Port #3 K - K -	Port 3	Incom 🚽	Port 03	Configure	Сору
Port #4 K 💌 K 💌	Port 4	None	Port 04		Сору
Port #5 K 💌 K 💌	Port 5	2179	Port 05		Сору
Port #6 K V K V	Port 6	Arbiter C2020(M)	Port 06		Сору
Port #7 K • K •	Port 7	C2100H(M) DNPM	Port 07		Сору
Port #8 K 💌 K 💌	Port 8	Electran	Port 08	-	Сору
Port #9 K 💌 K 💌	Port 9	ETI Harris (M)	Port 09	-	Сору
Port #10 K V K V	<u>Port 10</u>	Incom JEM2 ASCII	Port 10	-	Сору
Port #11 K V K V	<u>Port 11</u>	Modbus(M)	Port 11		Сору
Port #12 K 💌 K 💌	<u>Port 12</u>	Quantum SEL	Port 12		Сору
Communication Associations Config		Series V(M) Symax Tickle			Back
		Transdata Tunnel - MTU-RTU - 8979 C2100H CDC I CDC I DNPR FM Harris (R) IDLC L&N			

Figure 14-1 Communication Port Configuration

14.1.1 Port Number

Physical Port number of the RTU.

14.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

14.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

14.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

14.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

14.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name					
Name Port 1					
	Cancel	Submit			

14.1.4 Protocol

From the drop-down list, select the protocol for this port.

14.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

14.1.6 Point Operations

Click this button to assign points.

14.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

14.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

14.2 **Configure Protocol, Serial Comm**

Under the heading Configure Protocol, click Port *n* to configure the Incom port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

	Incom Communication Channel Setup			
	Port # : 2	Port Name : Port 2		
	Number of IEDs	1		
	Baud Rate *	9600 💌		
	Parity *	None 💌		
	Data Bits *	8 🛩		
	Stop Bits(0 = Sync) *	1 💌		
	CTS Delay *	20 (ms)		
	Rx Timeout *	2000 (ms)		
	Poll Time	2000 (ms)		
	Retries Before Failing Points	3 (times)		
Default: 0.	Echo Commands	○No ⊙Yes		
Range: 0 to 32.	Cancel Sut			

Figure 14-2 Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

14.2.1 Number of IEDs (0-32)

Enter the number of IEDs on the port. The default setting is 0.

14.2.2 Baud Rate (300-19200)

From the drop-down menu, select the baud rate. The default setting is 9600.

14.2.3 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is None.

14.2.4 Data Bits (5,6,7,8)

From the drop-down menu, select the data bits for the associated channel. The default setting is 8.

14.2.5 Stop Bits (0,1,2)

From the drop-down menu, select the stop bits for the associated channel. The default setting is 1.

14.2.6 CTS Delay (0 – 250ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 20.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

14.2.7 Rx Timeout (0 – 30,000 msec)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 2000 msec.

14.2.8 Poll Time (0 – 10,000ms)

Enter the time to delay between a sequence of polling all the devices connected to this communications port. Default setting is 2000.

14.2.9 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

14.2.10 Echo Commands (No, Yes)

Select Yes or No to echo commands back to the RTU. The default is Yes.

Please note: No configuration changes take effect until the RTU is reset.

14.3 **Point Operations**

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Incom IED Configuration										
Port#:1									. Р	ort Name : Port 1
IED #	IED Name		Address O		On Scan		Delay (ms)) Slave Config	Copy to IEDn	
1		IC_IE	D_1	1		Y		1000	Edit	Сору
			IED #1 Configu	ration				Х		Back
		IED Name		IC_IED_1]			
			Meter Address		1]				
			Delay Between	Msg	1000	(msec)				
			On Scan *		Yes	◯ No		Set		

Figure 14-3	IED Configuration
-------------	-------------------

14.3.1 IED

The logical number of the IED on this communication channel.

14.3.2 IED Name

Click on the IED Name. A pop-up window called IED Configuration will appear, as shown above.

14.3.2.1 IED Name

The name of the IED. Type in a name, or accept the default.

14.3.2.2 Meter Address

The address of the Meter. Type in an address, or accept the default.

14.3.2.3 Delay Between Msg (1 - 32767 msec.)

Type in the delay between messages or accept the default. Default is 1000 msec.

14.3.2.4 On Scan

Determines whether or not the Meter is being scanned. Click No to disable the scan, or accept the default (Yes).

14.3.2.5 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

14.3.3 IED Address

Reflects the entry in the pop-up menu. See above.

14.3.4 On Scan

Reflects the entry in the pop-up menu. See above.

14.3.5 Delay (ms)

Reflects the entry in the pop-up menu. See above.

14.3.6 Slave Config

Click the Edit button to edit the IED points.

14.3.7 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

14.3.7.1 Slave Configuration Edit

14.3.8 Slave Config

Click Edit to continue. A screen similar to Figure 2-10 will appear.

Incom Meter Configuration								
Port # 1 IED #:1								
Туре	Number	Edit						
Analogs Inputs	13	Edit						
Status Inputs	32	Edit						
Control Outputs	6	Edit						
		Back						

Figure 14-4 IED Configuration

14.3.9 Type

The type of point.

14.3.10 Number

Reflects a fixed number of various types of points from your IED.

14.3.11 Edit

Click the Edit button to edit points.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

14.3.12 IED Analog Configuration

From the IED Configuration screen, click on Edit for Analog Inputs. A screen similar to Figure 2-13 will appear.

	Incom Meter An	alog Inputs C	onfiguration	
Port#:1 ED#:1				Port Name : Port 1) Name : IC_IED_1
Pnt	Name	EGU Min	EGU Max	Add Points to Database
0	Ph A Amps	0	600	Yes O No
1	Ph B Amps	0	600	Click on Header to
2	Ph C Amps	0	600	Change All
3	Neutral Amps	0	150	O Yes Change All
4	Ph A Volts NW	0	12000	
5	Ph B Volts NW	0	12000	and/or change
6	Ph C Volts NW	0	12000	Yes O No
7	Ph A Volts Xfmr	0	1000	⊙Yes ○No
8	Ph B Volts Xfmr	0	1000	⊙Yes ○No
9	Ph C Volts Xfmr	0	1000	● Yes ● No
10	Ph A Volts	0	12000	● Yes ● No
11	Ph B Volts	0	12000	Yes ON0
12	Ph C Volts	0	12000	● Yes ● No
			Ca	ncel Submit

Figure 14-5 Analog Input Configuration

14.3.13 Point

Protocol logical point number. This number cannot be changed.

14.3.14 Name

Enter the name of the point (or accept the default name).

14.3.15 EGU Min

Accept the default or enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

14.3.16 EGU Max

Accept the default or enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

14.3.17 Add Points to Database (Yes, No)

Accept the default or click either Yes to add a point to the database or no to exclude a point from the database.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

14.3.18 IED Status Configuration

From the IED Configuration screen, click on Edit for Status. A screen similar to Figure 2-14 will appear.

Incom Meter Status Configuration								
Port#:1				ort Name : Port 1				
IED # :1	Power1 of 2	0		Name : IC_IED_1 Next >>				
	Page 1 of 3	GoTo	Go					
Point	Point Name	Byte	Bit	Add Points to Database 🤏				
-1	COMM STATUS							
0	V2n GT .8 pu	0	1	⊙Yes ○No				
1	V2p GT .2 pu 1 Demand	1	1	⊙Yes ○No				
2	V1p GT .06 pu	2	1	⊙Yes ○No				
3	Sensitive Trip	3	1	⊙Yes ○No				
4	Time Delay Sen Trip	4	1	⊙Yes ○No				
5	V1n and V1p	5	1	⊙Yes ○No				
6	Var Trip	6	1	⊙Yes ○No				
7	Breaker Pumping	7	1	⊙Yes ○No				
8	Remote Trip	0	1	⊙Yes ○No				
9	Checksum Failure	1	2	⊙Yes ○No				
10	Overcurrent Trip	2	2	⊙Yes ○No				
11	Sen Non-Sen Trip	3	2	⊙Yes ○No				
12	Pwr Up RAM Fail	4	2	⊙Yes ○No				
13	Watt Trip	5	2	⊙Yes ○No				
14	Time Delay Watt Trip	6	2	⊙Yes ○No				
			Cano	el Submit				

Figure 14-6 Status Input Configuration

14.3.19 Point

Protocol logical point number. This number cannot be changed. The COMM_STS point is automatically assigned to show whether this IED has valid connections.

14.3.20 Point Name

Enter the name of the point (except for COMM_STS which can not be changed) or accept the default name.

329

14.3.21 Byte

Reflects which byte the status point has been assigned to.

14.3.22 Bit

Reflects which bit the status point has been assigned to.

14.3.23 Add Points to Database (Yes, No)

Accept the default or click either Yes to add a point to the database or no to exclude a point from the database. All selections in this column may be changed at once by clicking on the header.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

14.3.24 IED Controls Configuration

Click on Edit for Control Outputs. A screen similar to Figure 2-17 will appear.

	Incom Meter L	Digit	tal O	utp	ut c	onfigu	ratio	n				
Port#:1 IED # :1								IE				Port 1 ED_1
Doint	Nama			Trip	Byte			(Close	e Byte	e	
Point	Name		1	:	2	3		1	Ż	2	:	3
0	IC_SBO 1	0	*	0	~	0 🗸	0	*	0	~	0	*
1	IC_SBO 2	0	*	0	~	0 1	0	*	0	~	0	~
2	IC_SBO 3	0	*	0	*	2	0	*	0	*	0	~
3	IC_SBO 4	0	*	0	*	4	0	*	0	*	0	~
4	IC_SBO 5	0	*	0	~	5 6	0	*	0	~	0	~
5	IC_SBO 6	0	*	0	*	7 .8	0	*	0	*	0	*
						9 10		Car	ncel		Subm	nit
						11						
						12 13						
						14						

Figure 14-7 Digital Output Configuration

14.3.25 Point

Protocol logical point number. This number cannot be changed

14.3.26 Name

Enter the name of the point (or accept the default name)

15

14.3.27 Trip Byte

From the pull-down menu, select the bit within the three bytes for Trip (or accept the default).

14.3.28 Close Byte

From the pull-down menu, select the bit within the three bytes for Close (or accept the default).

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

14.4 Data Display

Click the Data Display tab as shown in Figure 2-18.

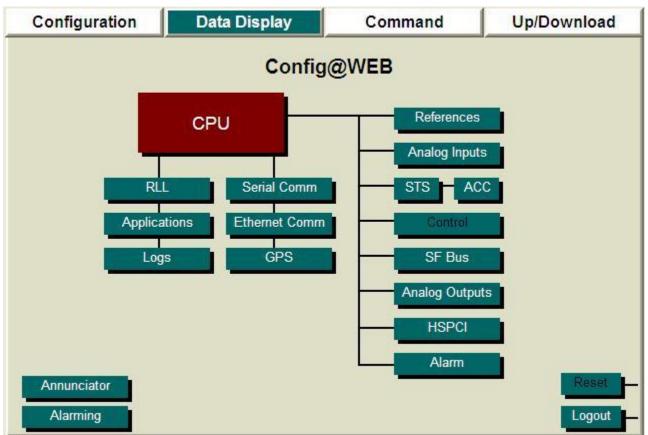


Figure 14-8 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Display Communication Port Data								
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data		
Port #1	K	K	Port 1	DNPR	View	Port Data		
Port #2	К	K	Port 2	DNPM	View	Port Data		
Port #3	К	K	Port 3	Incom	View	Port Data		
Port #4	К	K	Port 4	None	View	Port Data		
Port #5	К	K	Port 5	None	View	Port Data		
Port #6	К	K	Port 6	None	View	Port Data		
Port #7	К	К	Port 7	None	View	Port Data		
Port #8	К	К	Port 8	None	View	Port Data		
Port #9	К	К	Port 9	None	View	Port Data		
Port #10	К	К	Port 10	None	View	Port Data		
Port #11	К	ĸ	Port 11	None	View	Port Data		
Port #12	К	ĸ	Port 12	None	View	Port Data		
Communication Associations Config Back								

14.4.1 Port Number

Physical Port number of the RTU.

14.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

14.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

14.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

14.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at power up and always be the negative RS232 voltage.

14.4.3 Name

The port name given during configuration or default name accepted.

14.4.4 Protocol

The configured protocol for this port.

14.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

14.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

14.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

14.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 14-10 Communication Counters Display	Figure 14-10	Communication	Counters Display
---	--------------	---------------	-------------------------

	Incom Communication Counters	Display
Port # : 2		Port Name : Port 2
Point	Counter Name	Counts
1	Attempts	1
2	Valid Replies	0
3	No Replies	1
4	RX Timeouts	
5	CRC Errors	0
6	Framing Errors	0
7	Overruns	0
8	Parity Errors	0
Data Trap	Configure	
IED Comr	n Counters View	
Reset Co	mm Counters Reset	
		Back
		BACK

14.4.9 Point

A logical point number for reference only.

14.4.10 Counter Name

The following counters are monitored:

14.4.10.1 Attempts

This indicates the cumulative number of transmitted messages since the last reset or power-up.

14.4.10.2 Valid Replies

This indicates the cumulative number of received messages since the last reset or power-up.

Document Version 6.5

14.4.10.3 No Replies

This indicates the cumulative number of no replies since the last reset or power-up.

14.4.10.4 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

14.4.10.5 CRC Errors

This indicates the cumulative number of CRC Errors since the last reset or power-up.

14.4.10.6 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

14.4.10.7 Overruns

This indicates the cumulative number of overrun errors since the last reset or power-up.

14.4.10.8 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

14.4.11 Counts

The counts for each type of Counter.

14.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

14.4.13 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

Incom IED Comm Counters Display

Port # : 1								Port Nam	ne : Port 1
IED #	IED Name	Messages Sent	Valid Replies	No Replys		Security Errors	Framing Errors	Overrun Errors	Parity Errors
1	IC_IED_1	6	0	6	0	0	0	0	0
2	IC_IED_2	4	0	4	0	0	0	0	0
									Done

14.4.13.1 IED

The number of the IED

14.4.13.2 IED Name

The name of the IED

14.4.13.3 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

14.4.13.4 Valid Replies

This indicates the cumulative number of received messages since the last reset or power-up.

14.4.13.5 No Replies

This indicates the cumulative number of no replies since the last reset or power-up.

14.4.13.6 Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

14.4.13.7 Security Errors

This indicates the cumulative number of CRC Errors since the last reset or power-up.

14.4.13.8 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

14.4.13.9 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

14.4.13.10 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

14.4.14 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

14.4.15 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

	moom	ILD Data			
Port#:1				Port Nam	e : Port 1
IED #	IED Name	Address	On Scan	Delay (ms)	Slave Data
1	IC_IED_1	1	Y	1000	View
2	IC_IED_2	2	Y	1000	View
					Back

Figure 14-11 IED Display

14.4.16 IED

The logical number of the IED on this communication channel.

14.4.17 IED Name

The name that was chosen, or accepted as default, during configuration.

14.4.18 IED Address

The IED Address chosen during configuration.

14.4.19 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

14.4.20 Delay (ms)

This is the delay between messages in miliseconds.

14.4.21 Slave Data

Click View to examine the data being returned from this device, then click either Analog or Status to view as shown below.

Figure 14-12	IED Display
--------------	-------------

Incom IED Data									
Port#:1 Port Name : Port 1									
IED Name	Address	On Scan	Delay (ms)	Slave Data					
IC_IED_1	1	Y	1000	View					
IC_IED_2	2	Y	1000		x				
				t l					
	IED Name IC_IED_1	IED Name Address IC_IED_1 1	IED Name Address On Scan IC_IED_1 1 Y	IED Name Address On Scan Delay (ms) IC_IED_1 1 Y 1000	IED Name Address On Scan Delay (ms) Slave Data IC_IED_1 1 Y 1000 View				

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

14.4.21.1 Analog Inputs

From the IED Data Display screen, click Analog to get the screen shown below.

Figure 1 (15) Finance inputs Display								
	Incom Analog Inputs Display							
Port#:1 IED#:1	Page1 of 1	0 T	IED	Port Name : Port 1 Name : IC_IED_1				
	Fageroni	Go To	Go					
Point	Point Name	Point Status	Point Value	Point Counts				
1	Ph A Amps	F	0.000	0				
2 3	Ph B Amps	F	0.000	0				
3	Ph C Amps	F	0.000	0				
4	Neutral Amps	F	0.000	0				
5	Ph A Volts Xfmr	F	0.000	0				
6 7	Ph B Volts Xfmr	F	0.000	0				
	Ph C Volts Xfmr	F	0.000	0				
8	Ph A Volts	F	0.000	0				
9	Ph B Volts	F	0.000	0				
10	Ph C Volts	F	0.000	0				
-	-	-	-	-				
-	-	-	-	-				
-	-	-	-	-				
-	-	-	-	-				
-	-	-	-	-				
-	-	-	-	-				
				Back				

Figure 14-13 Analog Inputs Display

14.4.22 Point

Protocol logical point number.

14.4.23 Point Name

The name of the point assigned during configuration.

14.4.24 Point State

Please see the Config@WEB Secure Software Users Guide.

14.4.25 Point Value

The engineering unit (EGU) value.

14.4.26 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

14.4.26.1 Status Inputs

From the IED Data Display screen, click Status to get the screen shown below.

Figure 14-14	Status I	nnute I	Jienlay
Figure 14-14	Status I	nputs i	Jispiay

	Incom Status Inpu	ıts Display		
Port#:1 IED#:1			Port Name : Po	
160 # . 1	Page1 of 2 Go	то GO	ED Name : IC_IE Nex	_
Point	Point Name	Point Status	Point State	•
0	COMM STATUS		CLOSED	•
1	V2n GT .8 pu	F	OPEN	•
2	V2p GT .2 pu 1 Demand	F	OPEN	•
3	V1p GT .06 pu	F	OPEN	•
4	Sensitive Trip	F	OPEN	•
5	Time Delay Sen Trip	F	OPEN	•
6	V1n and V1p	F	OPEN	•
7	Var Trip	F	OPEN	•
8	Breaker Pumping	F	OPEN	•
9	Remote Trip	F	OPEN	•
10	Checksum Failure	F	OPEN	•
11	Overcurrent Trip	F	OPEN	•
12	Sen Non-Sen Trip	F	OPEN	•
13	Pwr Up RAM Fail	F	OPEN	•
14	Watt Trip	F	OPEN	•
15	Time Delay Watt Trip	F	OPEN	•
			Bac	k 🗍

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not this IED is in good communications. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

14.4.27 Point

Protocol logical point number.

14.4.28 Point Name

The name of the point assigned during configuration.

14.4.29 Point State

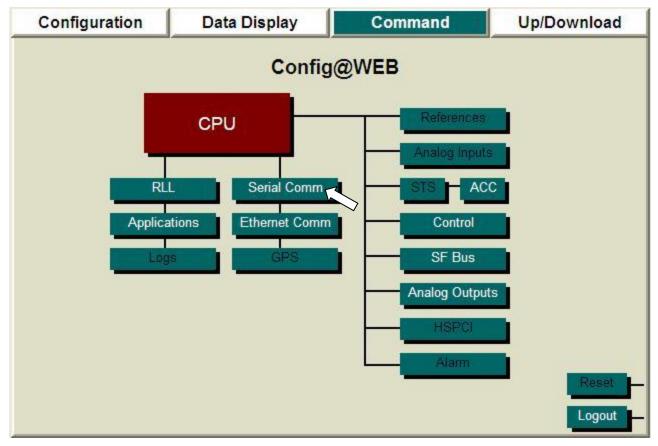
Please see the Config@WEB Secure Software Users Guide.

14.4.30 Point State

Indicates that point is either OPEN or CLOSED.

14.4.31 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

14.5 Command Serial Comm

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

Figure 14-15 Command Tab Page

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2400 manual. Under Command Port Data, click Port Data.

Command Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode
Port #1	К	К	Port 1	Incom	Port Data	Normal 💌
Port#2	К	К	Port 2	DNPR	Port Data	Normal 💌
Port#3	К	К	Port 3	DNPM	Port Data	Normal 💌
Port#4	К	К	Port 4	ETI	Port Data	Normal 💌
Port#5	К	К	Port 5	None	Port Data	Normal 💌
Port#6	К	К	Port 6	None	Port Data	Normal 💌
Port#7	К	К	Port 7	None	Port Data	Normal 💌
Port#8	к	К	Port 8	None	Port Data	Normal 💌
Port#9	к	К	Port 9	None	Port Data	Normal 💌
Port#10	к	К	Port 10	None	Port Data	Normal 💌
Port #11	к	К	Port 11	None	Port Data	Normal 💌
Port#12	К	К	Port 12	None	Port Data	Normal 💌

Figure 14-16 Command Communications Port Data

The resultant screen will be similar to Figure 2-31. Click on the Command button as shown.

Incom IED Command								
Port # 1 Port Name : Port 1								
IED #	IED Name	IED Address	On Scan	Slave Data				
1	IC_IED_1	1	Y	Command				
2	IC_IED_2	2	Y	Command				
Back								

Figure	$1/_{-}17$	IFD	Command
Figure	14-1/	IED	Command

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command SBO Outputs.

Incom IED Command							
Port # : 1 Port Name : Port 1							
<u>IED #:1</u>	IED	Name : IC_IED_1					
Туре	Number	Command					
Analog Inputs	13						
Status Inputs	33						
SBO Outputs	6	Command					
		Back					

Click on the Command button. The resulting screen will look like Figure 10-21 after either a Trip or Close has been selected, then Executed with the Execute button.

Figure 14-19	Incom SBO	Outputs	Command
Figure 14-19	Incom SDO	Outputs	Command

Incom SBO Outputs Command Port # : 1 IED # : 1 IED # : 1 IED # : 1 IED Name : IC_IED_1								
			Page 1 of	1	GoTo	Go]	
Point	Name		Trip Byte			Close Byt	e	Point Operations
Point	Name	1	2	3	1	2	3	Point Operations
0	IC_SBO 1	0	0	0	0	0	0	⊙ Trip ○ Close Execute
1	IC_SBO 2	0	0	0	0	0	0	○ Trip ○ Close Execute
2	IC_SBO 3	0	0	0	0	0	0	O Trip O Close Execute
3	IC_SBO 4	0	0	0	0	0	0	O Trip O Close Execute
4	IC_SBO 5	0	0	0	0	0	0	O Trip O Close Execute
5	IC_SBO 6	0	0	0	0	0	0	O Trip O Close Execute
								Back

15 ETI

15.1 Serial Comm Port Configuration

is a protocol that communicates between the RTU and an IED. It can be used to front-end an existing RTU in order to add new communication functionality within the substation while preserving the existing hardware I/O.

The protocol running on an RTU can also be used at the master station as a front-end processor scanning multiple RTUs and converting the data to a different protocol.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click from the Protocol drop-down menu as shown.

Communication Port Configuration							
Port Number RTS DTR Configure IRQs	Name	Protocol	Configure Protocol	Point Operations	Copy to Port		
Port #1 K V K V	Port 1	DNPR	Port 01	Map Points	Сору		
Port #2 K V K V IRQ6	Port 2	DNPM -	Port 02	Configure	Сору		
Port #3 K V K V	Port 3	ETI	Port 03	Configure	Сору		
Port #4 K V K V	Port 4	None	Port 04	-	Сору		
Port #5 K V K V	Port 5	2179	Port 05	-	Сору		
Port #6 K V K V	Port 6	Arbiter C2020(M)	Port 06	-	Сору		
Port #7 K • K • IRQ6 •	Port 7	C2100H(M) DNPM	Port 07	-	Сору		
Port #8 K V K V	Port 8	Electran	Port 08	-	Сору		
Port #9 K 💌 K 💌	Port 9	Harris (M)	Port 09	-	Сору		
Port #10 K V K V	<u>Port 10</u>	Incom JEM2 ASCII	Port 10	-	Сору		
Port #11 K • K • IRQ6 •	<u>Port 11</u>	Modbus(M) Quantum	Port 11	-	Сору		
Port #12 K 💌 K 💌	<u>Port 12</u>	SEL	Port 12	-	Сору		
Communication Associations Config	3	Series V(M) Symax Tickle Transdata Tunnel - MTU-RTU - 8979 C2100H CDC I CDC I CDC II DNPR FM Harris (R) IDLC L&N			Back		

Figure 15-1 ETI Communication Port Configuration

Communication Port Configuration

15.1.1 Port Number

Physical Port number of the RTU.

15.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

15.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

15.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

15.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

15.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name					
Name Port 1					
Cancel Submit					

15.1.4 Protocol

From the drop-down list, select the protocol for this port.

15.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

15.1.6 Point Operations

Click this button to assign points.

15.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

15.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

15.2 Configure Protocol, Serial Comm

Under the heading Configure Protocol, click Port *n* to configure the port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

	ETI Communication Channel Setup				
F	Port#:2		Port Name : Por		t 2
		Number of IEDs	1		
		Baud Rate *	9600	✓	
		Parity *	None	✓	
		Data Bits *	8 🛩		
		Stop Bits *	1 🛩		
		CTS Delay *	0	(ms)	
	I	Rx Timeout *	2000	(ms)	
	I	B4 Time *	10	(ms)	
		Interbyte Time *	100	(ms)	
		Modem Turn Off Time *	0	(ms)	
		Poll Time	2000	(ms)	
Dete		Retries Before Failing Points	3	(times)	
Default: 0. Range: 0 to 32.		Echo of TX data received	ON	o 💿 Yes	
Range. 0 10 52.			Cancel	Submit	

Figure 15-2 ETI Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

15.2.1 Number of IEDs (0-32)

Enter the number of IEDs on the port. The default setting is 0.

15.2.2 Baud Rate (300-19200)

From the drop-down menu, select the baud rate. The default setting is 9600.

15.2.3 Parity (None, Odd, Even)

Enter the parity for the associated channel. The default setting is None.

15.2.4 Data Bits (5,6,7,8)

From the drop-down menu, select the data bits for the associated channel. The default setting is 8.

15.2.5 Stop Bits (0,1,2)

From the drop-down menu, select the stop bits for the associated channel. The default setting is 1.

15.2.6 CTS Delay (0 – 250ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 0.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

15.2.7 Rx Timeout (0 – 30,000 msec)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 2,000 msec.

15.2.8 B4 Time (0 – 250 msec)

Enter the B4 time for the associated channel. The B4 time is the length of quiet time required on the channel following a transmission from the RTU prior to turning on the RTU's receive interrupts. Default setting 10 msec.

15.2.9 Interbyte Time (0 – 250ms)

Enter the inter-byte time for the associated channel. The inter-byte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 100 msec.

15.2.10 Modem Turn Off Time (0 – 250ms)

Enter the delay time that the modem will maintain the carrier after the last data byte has been transmitted. Default setting is 0.

15.2.11 Poll Time (0 – 10,000ms)

Enter the time to delay between a sequence of polling all the devices connected to this communications port. Default setting is 2000.

15.2.12 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

15.2.13 Echo of TX Data received (No, Yes)

Select Yes or No to echo commands back to the RTU. The default is Yes.

Please note: No configuration changes take effect until the RTU is reset.

15.3 **Point Operations**

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Electronics Technologies Inc. IED Configuration Port#:4 Port Name : Port 4 IED Slave Copy IED # IED Name On Scan Message Timers(ms) Address Config to IEDn 1 ETI_IED_1 1 Y TBM-150.SOT-500.AOT-3500 Edit Copy IED #1 Configuration х Back IED Name ETI_IED_1 IED Address 1 Yes O No On Scan * Message Timers Time Between Messages 150 (ms).[TBM] Select to Operate Time 500 (ms).[SOT] After Operate Time 3500 (ms).[AOT] Set

15.3.1 IED

The logical number of the IED on this communication channel.

15.3.2 IED Name

Click on the IED Name. A pop-up window called IED Configuration will appear, as shown above.

15.3.2.1 IED Name

The name of the IED. Type in a name, or accept the default.

15.3.2.2 IED Address

The address of the IED. Type in an address, or accept the default.

15.3.2.3 On Scan

Determines whether or not the IED is being scanned. Click No to disable the scan, or accept the default (Yes).

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

15.3.2.4 Message Timers

15.3.2.5 Time Between Msg (0 – 12750 msec.)

Type in the delay between messages or accept the default. Default is 150 msec.

15.3.2.6 Select to Operate Time (0 – 12750 msec.)

Type in the delay between a Select command and an Operate command or accept the default. Default is 500 msec.

15.3.2.7 After Operate Time (0 – 12750 msec.)

Type in the delay between separate SBO commands or accept the default. Default is 3500 msec.

15.3.2.8 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

15.3.3 IED Address

Reflects the entry in the pop-up menu. See above.

15.3.4 On Scan

Reflects the entry in the pop-up menu. See above.

15.3.5 Message Timers (ms)

Reflects the entry in the pop-up menu. See above. (TBM = Time Between Messages, SOT = Select to Operate Time, AOT = After Operate Time)

15.3.6 Slave Config

Click the Edit button to edit the IED points.

15.3.7 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

15.3.7.1 Slave Configuration Edit

15.3.8 Slave Config

Click Edit to continue. A screen similar to Figure 2-10 will appear.

Electronic Technologies, Inc. IED Configuration					
Port#:1 Port Name : Port 1 IED #:1 IED Name : ETI IED 1					
IED #: 1 IED Name : ETI_IED_1					
Type Configure					
Simple Status	Edit				
Analog Inputs Edit					
Control Outputs	Edit				
	Back				

Figure 15-4 IED Configuration

15.3.9 Type

The type of point.

15.3.10 Configure

Click the Edit button to edit points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

15.3.11 IED Simple Status Configuration

From the IED Configuration screen, click on Edit for Simple Status. A screen similar to Figure 2-14 will appear.

ETI Simple Status Configuration					
Port#:1		ort Name : Port 1			
IED#:1	Page 1 of 3 GoTo	lame : ETI_IED_1 Go Next >>			
SEQ#		Add Points to			
(Hex)	Name	Database			
-1	COMM_STS				
30-0	IED_STS_30-0	💿 Yes 🔘 No			
30-1	IED_STS_30-1	⊙Yes ⊖No			
30-2	IED_STS_30-2	⊙Yes ○No			
30-3	IED_STS_30-3	🔾 Yes 💿 No			
30-4	IED_STS_30-4	🔾 Yes 💿 No			
30-5	IED_STS_30-5	🔾 Yes 💿 No			
30-6	IED_STS_30-6	🔿 Yes 💿 No			
30-7	IED_STS_30-7	⊙Yes ⊖No			
30-8	IED_STS_30-8	⊙Yes ⊖No			
30-9	IED_STS_30-9	⊙Yes ⊖No			
30-10	IED_STS_30-10	⊙Yes ⊖No			
30-11	IED_STS_30-11	🔾 Yes 💿 No			
30-12	IED_STS_30-12	⊙Yes ⊖No			
30-13	IED_STS_30-13	🔾 Yes 💿 No			
30-14	IED_STS_30-14	⊙Yes ⊖No			
	Can	cel Submit			

Figure 15-5 Simple Status Configuration

15.3.12 SEQ# (Hex)

This is the Status sequence in Hex.

15.3.13 Point Name

This is the name of the point. If the point is added to the database, you may change the name of the point or accept the default name.

15.3.14 Add Points to Database (Yes, No)

Click Yes to add a point to the database.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

15.3.15 IED Analog Configuration

From the IED Configuration screen, click on Edit for Analog Inputs. A screen similar to Figure 2-13 will appear.

ETI Analog Inputs Configuration						
Port#:1 IED #:1						Port Name : Port 1 Name : ETI_IED_1
1207.1		Page 1 of 2	GoT	o Go	1201	Next >>
SEQ# (Hex)	Name	C Min	C Max	EGU Min	EGU Max	Add Points to Database
80	IED_AI_80	-32768	32767	-5	F	⊙ Yes ○ No
82	IED_AI_82	-32768	32767	-5	5 Click	on Header to
84	IED_AI_84	-32768	32767	-5	5 Chang	
86	IED_AI_86	-32768	32767	-5	5 Chang	
88	IED_AI_88	-32768	32767	-5	5 Value	Set
89	IED_AI_89	-32768	32767	-5	5 and/or	r change
8A	IED_AI_8A	-32768	32767	-5		◯ Yes ⊙ No
8B	IED_AI_8B	-32768	32767	-5	5	🔾 Yes 💿 No
8C	IED_AI_8C	-32768	32767	-5	5	⊙ Yes ○ No
8D	IED_AI_8D	-32768	32767	-5	5	⊙ Yes ○ No
8E	IED_AI_8E	-32768	32767	-5	5	⊙ Yes ○ No
8F	IED_AI_8F	-32768	32767	-5	5	⊙ Yes ○ No
90	IED_AI_90	-32768	32767	-5	5	⊙ Yes ○ No
91	IED_AI_91	-32768	32767	-5	5	🔾 Yes 💿 No
92	IED_AI_92	-32768	32767	-5	5	⊙ Yes ○ No
93	IED_AI_93	-32768	32767	-5	5	⊙Yes ○No
Cancel Submit						

15.3.16 SEQ# (Hex)

This is the Analog sequence in Hex.

15.3.17 Name

If the point has been added to the database, enter the name of the point (or accept the default name).

15.3.18 C Min

If the point has been added to the database, accept the default or enter a minimum count for the point. All entries in this column may be changed at once by clicking on the header.

15.3.19 C Max

If the point has been added to the database, accept the default or enter a maximum count for the point. All entries in this column may be changed at once by clicking on the header.

15.3.20 EGU Min

If the point has been added to the database, accept the default or enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

15.3.21 EGU Max

If the point has been added to the database, accept the default or enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

15.3.22 Add Points to Database (Yes, No)

Click Yes to add a point to the database.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

15.3.23 IED Controls Configuration

Click on Edit for Control Outputs. A screen similar to Figure 2-17 will appear.

Figure 15-7 Digital Output Configuration

ETI Control Output Configuration					
Port #:1 Port Name : Port					
IED # : 1 SEQ#		ame : ETI_IED_1 Add Points to			
(Hex)	Name	Database			
00	Control-00	⊙Yes ○No			
01	Control-01	⊙ Yes 🔿 No			
02	Control-02	⊙ Yes 🔿 No			
03	Control-03	⊙ Yes 🔿 No			
04	Control-04	💿 Yes 🔾 No			
05	Control-05	⊙Yes ⊖No			
06	Control-06	⊙Yes ⊖No			
07	Control-07	⊙Yes ⊖No			
08	Control-08	⊙Yes ⊖No			
09	Control-09	⊙ Yes 🔿 No			
Cancel Submit					

15.3.24 SEQ# (Hex)

This is the Control sequence in Hex.

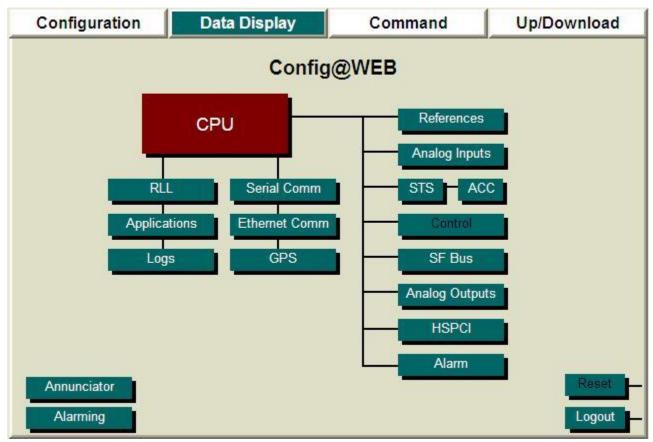
15.3.25 Name

If the point has been added to the database, enter the name of the point (or accept the default name)

15.3.26 Add Points to Database (Yes, No)

Click Yes to add a point to the database.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

15.4 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 15-8 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 15-9 Display Communication Port Data

Display Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	K	K	Port 1	DNPR	View	Port Data
Port #2	К	К	Port 2	DNPM	View	Port Data
Port #3	К	К	Port 3	ETI	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port #5	К	К	Port 5	None	View	Port Data
Port #6	К	К	Port 6	None	View	Port Data
Port #7	К	К	Port 7	None	View	Port Data
Port #8	К	К	Port 8	None	View	Port Data
Port #9	К	К	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port #11	К	К	Port 11	None	View	Port Data
Port #12	К	К	Port 12	None	View	Port Data
Communication Associations Config Back						

15.4.1 Port Number

Physical Port number of the RTU.

15.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

15.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

15.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

15.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

15.4.3 Name

The port name given during configuration or default name accepted.

15.4.4 Protocol

The configured protocol for this port.

15.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

15.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

15.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

15.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

Figure 15-10	Communication	Counters Display
--------------	---------------	------------------

ETI Communication Counters Display					
Port # : 3		Port Name : Port 3			
Point	Counter Name	Counts			
1	Attempts	0			
2	Valid Replies	0			
3	No Replies	0			
4	RX Timeouts	0			
5	CRC Errors	0			
6	Framing Errors	0			
7	Overruns	0			
8	Parity Errors	0			
Data Trap	Configure				
IED Comr	n Counters View				
Reset Col	mm Counters Reset				
		Back			

15.4.9 Point

A logical point number for reference only.

15.4.10 Counter Name

The following counters are monitored:

15.4.10.1 Attempts

This indicates the cumulative number of transmitted messages since the last reset or power-up.

15.4.10.2 Valid Replies

This indicates the cumulative number of received messages since the last reset or power-up.

15.4.10.3 No Replies

This indicates the cumulative number of no replies since the last reset or power-up.

15.4.10.4 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

15.4.10.5 CRC Errors

This indicates the cumulative number of CRC Errors since the last reset or power-up.

15.4.10.6 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

15.4.10.7 Overruns

This indicates the cumulative number of overrun errors since the last reset or power-up.

15.4.10.8 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

15.4.11 Counts

The counts for each type of Counter.

15.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

15.4.13 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

ETI IED Comm Counters Display

Port # : 1 Port Name : Port							ie : Port 1		
IED #	IED Name	Messages Sent	Valid Replies	No Replys	Timeouts	Security Errors	Framing Errors	Overrun Errors	Parity Errors
1	ETI_IED_1	68	0	68	0	0	0	0	0
2	ETI_IED_2	0	0	0	0	0	0	0	0
									Done

15.4.13.1 IED

The number of the IED

15.4.13.2 IED Name

The name of the IED

15.4.13.3 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

15.4.13.4 Valid Replies

This indicates the cumulative number of received messages since the last reset or power-up.

15.4.13.5 No Replies

This indicates the cumulative number of no replies since the last reset or power-up.

15.4.13.6 Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

15.4.13.7 Security Errors

This indicates the cumulative number of CRC Errors since the last reset or power-up.

15.4.13.8 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

15.4.13.9 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

15.4.13.10 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

15.4.14 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

15.4.15 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

		ETIIEI	D Display		
Port#:	:1			Port Nan	ne : Port 1
IED #	IED Name	IED Address	On Scan	Message Timers(ms)	Slave Data
1	ETI_IED_1	1	Y	TBM-150, SOT-500, AOT-3500	View
2	ETI_IED_2	2	Y	TBM-150, SOT-500, AOT-3500	View
					Back

Figure 15-11 IED Display

15.4.16 IED

The logical number of the IED on this communication channel.

15.4.17 IED Name

The name that was chosen, or accepted as default, during configuration.

15.4.18 IED Address

The IED Address chosen during configuration.

15.4.19 Message Timers (ms)

TBM (Time Between Messages in milliseconds)

SOT (Select to Operate Time in milliseconds)

AOT (After Operate Time in milliseconds)

15.4.20 Slave Data

Click View to examine the data being returned from this device, then click either Analog or Status to view as shown below.

ETI IED Display				
Port # : 1 IED # : 1	Port Name : Port 1 IED Name : ETI_IED_1			
Туре	View Data			
Simple Status	View			
Analog Inputs	View			
Control Outputs				
Back				

Figure 15-12 IED Display

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

358

15.4.20.1 Simple Status Inputs

From the IED Data Display screen, click Status to get the screen shown below.

Figure 15-13 Status Inputs Display

ETI Simple Status Inputs Display Port#:1 Port Name : Port 1 IED #:1 IED Name : ETI_IED_1 Page1 of 1 Go GO					
Point	Point Name	Point Status	Point State	•	
-1	COMM_STS		CLOSED	•	
30-0	IED_STS_30-0	F	OPEN	•	
30-1	IED_STS_30-1	F	OPEN	•	
30-2	IED_STS_30-2	F	OPEN	•	
30-7	IED_STS_30-7	F	OPEN	•	
30-8	IED_STS_30-8	F	OPEN	•	
30-9	IED_STS_30-9	F	OPEN	•	
30-10	IED_STS_30-10	F	OPEN	•	
30-12	IED_STS_30-12	F	OPEN	•	
30-14	IED_STS_30-14	F	OPEN	•	
-	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	
-	-	-		-	
Back					

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not this IED is in good communications. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

15.4.21 Point

Protocol logical point number.

15.4.22 Point Name

The name of the point assigned during configuration.

15.4.23 Point Status

Please see the Config@WEB Secure Software Users Guide.

15.4.24 Point State

Indicates that point is either OPEN or CLOSED.

15.4.25 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

15.5 Analog Inputs

From the IED Data Display screen, click Analog to get the screen shown below.

D '	15 14	A 1	T	D'1.
Figure	15-14	Analog	inputs	Display

ETI Analog Inputs Display					
Port#:1			F	Port Name : Port 1	
IED #:1			IED N	lame : ETI_IED_1	
	Page1 of 1	Go To	Go		
Point	Point Name	Point Status	Point Value	Point Counts	
80	IED_AI_80	F	-5.000	-32768	
82	IED_AI_82	F	-5.000	-32768	
84	IED_AI_84	F	-5.000	-32768	
86	IED_AI_86	F	-5.000	-32768	
88	IED_AI_88	F	-5.000	-32768	
89	IED_AI_89	F	-5.000	-32768	
8C	IED_AI_8C	F	-5.000	-32768	
8D	IED_AI_8D	F	-5.000	-32768	
8E	IED_AI_8E	F	-5.000	-32768	
8F	IED_AI_8F	F	-5.000	-32768	
90	IED_AI_90	F	-5.000	-32768	
92	IED_AI_92	F	-5.000	-32768	
93	IED_AI_93	F	-5.000	-32768	
-	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	
				Back	

15.5.1 Point

Protocol logical point number.

15.5.2 Point Name

The name of the point assigned during configuration.

15.5.3 Point Status

Please see the Config@WEB Secure Software Users Guide.

15.5.4 Point Value

The engineering unit (EGU) value.

15.5.5 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

15.6 **Command Serial Comm**

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

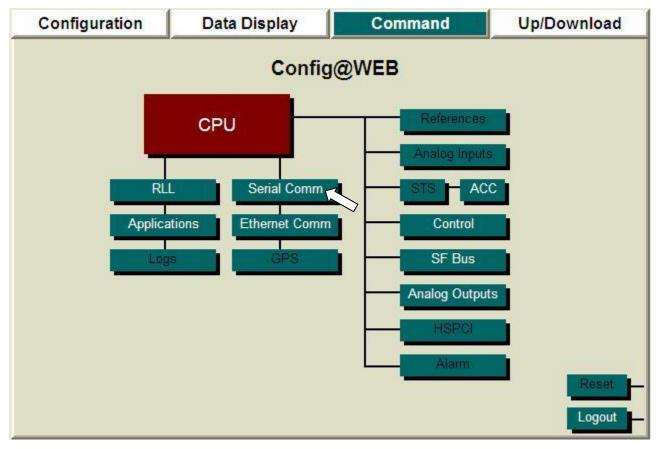


Figure 15-15 Command Tab Page

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2300 manual. Under Command Port Data, click Port Data.

Figure 15-16	ETI Serial Comm	Command Communications Port Data
--------------	-----------------	----------------------------------

Command Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode
Port #1	К	К	Port 1	ETI	Port Data	Normal 💌
Port#2	К	К	Port 2	DNPR	Port Data	Normal 💌
Port#3	К	К	Port 3	DNPM	Port Data	Normal 💌
Port#4	К	К	Port 4	None	Port Data	Normal 💌
Port#5	К	К	Port 5	None	Port Data	Normal 💌
Port#6	К	К	Port 6	None	Port Data	Normal 💌
Port#7	К	К	Port 7	None	Port Data	Normal 💌
Port#8	К	К	Port 8	None	Port Data	Normal 💌
Port#9	К	К	Port 9	None	Port Data	Normal 💌
Port#10	К	К	Port 10	None	Port Data	Normal 💌
Port#11	К	К	Port 11	None	Port Data	Normal 💌
Port#12	к	К	Port 12	None	Port Data	Normal 💌

The resultant screen will be similar to Figure 2-31. Click on the Command button as shown.

ETI IED Command								
Port # 1 Port Name : Port 1								
IED #	IED Name	IED Address	On Scan	Slave Data				
1	ETI_IED_1	1	Y	Command				
2	ETI_IED_2	2	Y	Command				
Back								

Figure 15-17 ETI IED Command

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command SBO Outputs.

ETI IED Command							
Port # : 1 Port Name : Port 1							
IED #:1 IED Name : ETI_IED_1							
Туре	Number	Command					
Analog Inputs	13						
Status Inputs	10						
SBO Outputs	10	Command					
		Back					

Figure 15-19 ETI SBO Outputs Command

		ETI SBO Outpu	ts Com	mand		
Port # : 1 IED # : 1						lame : Port 1 e : ETI_IED_1
120 # . 1		Page 1 of 1	GoTo	Go		
	Point	Name	P	oint Operati	ons	
	00	Control-00	💿 Trip	🔘 Close	Execute	
	01	Control-01	🔿 Trip	🔘 Close	Execute	
	02	Control-02	🔿 Trip	🔘 Close	Execute	
	03	Control-03	🔿 Trip	🔘 Close	Execute	
	04	Control-04	🔿 Trip	🔘 Close	Execute	
	05	Control-05	🔿 Trip	🔘 Close	Execute	
	06	Control-06	🔿 Trip	🔘 Close	Execute	
	07	Control-07	🔿 Trip	🔘 Close	Execute	
	08	Control-08	🔿 Trip	🔘 Close	Execute	
	09	Control-09	🔿 Trip	🔘 Close	Execute	
					Back	

16 Harris(M)

16.1 **Communication Port Configuration**

Harris(M) is a protocol that communicates between the SAGE RTU and one or more (up to 32) RTUs or IEDs per port using the Harris 5000, 5500, or 6000 protocols.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. From this screen, click Harris(M) from the Protocol drop-down menu as shown.

Communication Port Configuration							
Port Number RTS DTR Configure IRQs	Name	Protocol	Configure Protocol	Point Operations	Copy to Port		
Port #1 K 💌 K 💌	Port 1	DNPR 💌	Port 01	Map Points	Сору		
Port #2 K V K V IRQ6	Port 2	None	Port 02	Configure	Сору		
Port #3 K V K V	Port 3	2179	Port 03	-	Сору		
Port #4 K 💌 K 💌	<u>Port 4</u>	Arbiter C2020(M)	Port 04	-	Сору		
Port #5 K 💌 K 💌	Port 5	C2100H(M) DNPM	Port 05	-	Сору		
Port #6 K V K V IRQ6 V	Port 6	Electran ETI	Port 06	-	Сору		
Port #7 K V K V	<u>Port 7</u>	Harris (M)	Port 07	-	Сору		
Port #8 K 💌 K 💌	Port 8	Incom JEM2 ASCII	Port 08	-	Сору		
Port #9 K 💌 K 💌	Port 9	Modbus(M) Quantum	Port 09	-	Сору		
Port #10 K V K V IRQ6 V	<u>Port 10</u>	SEL	Port 10	-	Сору		
Port #11 K • K •	<u>Port 11</u>	Series V(M) Symax	Port 11	-	Сору		
Port #12 K 💌 K 💌	<u>Port 12</u>	Tickle Transdata	Port 12	-	Сору		
Communication Associations Con	fig	Tunnel - MTU-RTU -			Back		
		8979 C2100H CDC I CDC II DNPR FM Harris (R) IDLC L&N					

Figure 16-1 Harris(M) Communication Port Configuration

16.1.1 Port Number

Physical Port number of the RTU.

16.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

364

16.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

16.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

16.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

16.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name								
Name Port 1								
		Cancel	Submit					

16.1.4 Protocol

From the drop-down list, select the protocol for this port.

16.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

16.1.6 Point Operations

Click this button to assign points.

16.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

16.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

16.2 **Configure Protocol**

Under the heading Configure Protocol, click Port *n* to configure the Harris(M) port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Figure 16-2	Harris(M)	Communication	Channel	Configuration
-------------	-----------	---------------	---------	---------------

t#:15	Port	Name : Po
Number of IEDs	1	
Baud Rate *	9600	*
Parity *	Odd	*
Data Bits *	7 💙	
Stop Bits *	1 🛩	
CTS Delay *	30	(ms)
Rx Timeout *	1000	(ms)
Interbyte Time *	20	(ms)
Modem Turn Off Time *	0	(ms)
Poll Time	1000	(ms)
Delay Before First Byte *	150	(ms)
Hardware CTS	⊙ No	○ Yes
Hardware DCD	⊙ No	○ Yes
Retries Before Failing Points	3	(times)
Integrity Scan Interval	60	(min)
Time Synch Interval	60	(sec)
Accumulator Freeze Interval	60 💌	(min)
Time Format	⊙ Loc	al 🔿 UTC

Default: 0. Range: 0 to 32.

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of RTUs.

16.2.1 Number of IEDs (0-32)

Enter the number of IEDs on the port. The default setting is 0.

16.2.2 Baud Rate (300 – 19200)

Select the communications speed for the associated channel. Default setting is 9600.

16.2.3 Parity (None, Odd, Even)

Select the parity for the associated channel. The default setting is Odd.

16.2.4 Data Bits (5,6,7,8)

From the drop-down menu, select the data bits for the associated channel. The default setting is 7.

16.2.5 Stop Bits (0,1,2)

From the drop-down menu, select the stop bits for the associated channel. The default setting is 1.

16.2.6 CTS Delay (0 – 250ms)

Enter the Clear-To-Send delay in milliseconds for the associated channel. This is the time delay the channel will wait to start transmitting following Request-To-Send signal being asserted. Default setting is 30.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

16.2.7 Rx Timeout (0 – 60,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. Default setting is 1000 (1 second).

Note: This timer must be <u>greater</u> than Delay Before First Byte timer (below).

16.2.8 Interbyte Time (0 – 250ms)

Enter the interbyte time allowed before the received message is terminated. Default setting is 20.

16.2.9 Modem Turn Off Time (0 – 250ms)

Enter the delay time that the modem will maintain the carrier after the last data byte has been transmitted. Default setting is 0.

16.2.10 Poll Time (0 – 10,000ms)

Enter the time to delay between a sequence of polling all the devices connected to this communications port. The default is 1000 msec.

16.2.11 Delay Before First Byte (100 to 10,000ms)

Enter the delay time for the associated channel. This is the time allowed for a Slave Device to begin its response before the MTU assumes it is not going to reply and moves on to the next device. This parameter is typically set long because of delays in IED response. The default setting is 150ms.

Note: This timer must be <u>less</u> than Rx Timeout (above).

16.2.12 Hardware CTS (No, Yes)

If the hardware Clear-To-Send option is selected for a channel, then reply data bytes will not be transmitted unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. Default setting is No.

16.2.13 Hardware DCD (No, Yes)

If the hardware data carrier detect option is selected for a channel, then the channel communications driver will accept requested message data bytes only if carrier is detected by the modem. If carrier is not detected, the data bytes are discarded. Default setting is No.

16.2.14 Retries Before Failing Points (0 – 99)

Enter the number of times the RTU will attempt communications before marking all points attached to the device as failed. The default is 3.

16.2.15 Integrity scan interval (0 to 10000 min)

Enter the number of minutes for the execution of an Integrity Scan. An integrity scan is a full refresh of all data from every IED on scan. The default is 60.

16.2.16 Time sync interval (0 to 10000 sec)

Enter the time for synchronizing the Slave Devices from the DNPM real-time clock. This is the time in seconds between time sync messages from the DNPM to the IEDs. The default is 60.

16.2.17 Accumulator Freeze Interval (0 to 63 min)

Enter the number of minutes between accumulator freezes. The default is 60.

16.2.18 Time Format (Local, UTC)

Note: The coordination between UTC and local time is a feature that may be ignored. If you want your RTU to act as it always has in regards to time syncs, set Time Format to Local Time. See Time Configuration Settings in the Configuration chapter of the hardware manual for time settings under the CPU block.

If you want to send time synchronization to this device, you must know whether the device will accept Local time or UTC time, then set this radio button to match.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3 **Point Operations**

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Figure 16-3	IED Configuration
Harrie/M) I	D Configuration

Harris(M) IED Configuration							
Port # 2						P	ort Name : Port 2
IED # IE	IED Name			Туре	On Scan	Slave Config	Copy to IEDn
1 HR	HRS_IED_1			5000	Y	Edit	Сору
	IED #1 Configurati	ion				Х	Back
	IED Name		HRS	_IED_1			
	IED Address		1				
	Protocol Type		500	0 🔽			
	Comm Status		HRS	м_сом	M_STS		
	Use Frozen Accum	nulators ?	(💿	∕es ⊖N	10		
	On Scan *		(💿	(es 🔿 N	10	Set	

16.3.1 IED

The logical number of the IED on this communication channel.

16.3.2 IED Name

Click on the IED Name. A pop-up window called IED Configuration will appear, as shown above.

16.3.2.1 IED Name

The name of the IED. Type in a name, or accept the default.

16.3.2.2 IED Address

The address of the IED. Type in an address, or accept the default.

16.3.2.3 Protocol Type (5000, 5500, 6000)

From the drop-down list, select the type of RTU emulation to be performed: 5000, 5500 or 6000. This field is used to determine which protocol Op Codes will be valid along with defining specific header information used in RTU to IED responses. This field is also used by the Automatic Configuration function to determine valid port types. Default setting is 5000.

16.3.2.4 Comm Status

Accept the default name for the Comm Status bit or type in a new name.

16.3.2.5 Use Frozen Accumulators? (Yes, No)

Determines whether or not to send accumulator freezes to the IED. The default is Yes.

16.3.2.6 On Scan

Determines whether or not the IED is being scanned. Click No to disable the scan, or accept the default (Yes).

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

16.3.2.7 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

16.3.3 IED Address

Reflects the entry in the pop-up menu. See above.

16.3.4 Frozen Accum

Y means the RTU is sending accumulator freezes to the IED. N means this function is OFF. See above.

16.3.5 Type

Reflects the type of Harris protocol selected above (5000, 5500, or 6000).

16.3.6 On Scan

Reflects the entry in the pop-up menu. See above.

16.3.7 Slave Config

Click the Edit button to edit the IED points.

16.3.8 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

16.3.9 Slave Configuration Edit, Type 5000

From the Harris(M) IED Configuration screen, click Slave Config Edit. You will get the following screens.

Harris IED Setup Port #: 2 Port Name : Port 2 ED #: 1 IED Name : HRS IED 1							
Port		Туре		Edit Inputs	Edit Outputs		
1		32 Pt Control & Ind	*	Edit	Edit		
2		32 Pt Analog In	*	Edit	Edit		
3		8 Pt 12 bit ACC In	*	Edit	Edit		
4		4 Pt 24 bit ACC In	*	Edit	Edit		
5		4 Pt 32 bit ACC In	*	Edit	Edit		
6		6 Pt Raise/Lower Out	*	Edit	Edit		
7		4 Pt Analog Out	*	Edit	Edit		
					Back		

Eiguro 16 A	Lorrig(M)	IED Co	tum for	5000	Eirct Source	Tunoc
Figure 16-4		IED SE	101 101	JUUU.	riist seven	Types
0			· · · ·	,		J I

Figure 16-5 Harris(M) IED Setup for 5000, Eighth Type

Port # : 2 IED # : 1		Harris I	ED Setup	Port Name : Port 2 IED Name : HRS_IED_1
Port	Туре		Edit Inputs	Edit Outputs
1	16 Pt Digital Out	~	Edit	Edit
2	None	*	Edit	Edit
3	None	*	Edit	Edit
4	None	~	Edit	Edit
5	None	*	Edit	Edit
6	None	*	Edit	Edit
7	None	~	Edit	Edit
				Back

16.3.10 Port

The physical port number which will be associated with the point type.

16.3.11 Type

The type of point as shown above.

16.3.12 Edit Inputs

If the Harris(M) port has an input map, this button will be active.

16.3.13 Edit Outputs

If the Harris(M) port has an Output map, this button will be active.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

16.3.13.1 32 Pt. Control & Ind, Edit Inputs

F

Figure 16-6 Harris(M) Status Configuration for 5000

Harris (M) Status Configuration						
Port # 2 ED # : 1				ame : Port 2		
EU#.1		uge 1 of 2 GoTo	Go Go	HRS_IED_1 Next >>		
[Point	Name	;			
ľ	0	IED_STS 1_0				
	1	IED_STS 1_1				
	2	IED_STS 1_2				
	3	IED_STS 1_3				
	4	IED_STS 1_4				
	5	IED_STS 1_5				
	6	IED_STS 1_6				
	7	IED_STS 1_7				
	8	IED_STS 1_8				
	9	IED_STS 1_9				
	10	IED_STS 1_10				
	11	IED_STS 1_11				
	12	IED_STS 1_12				
	13	IED_STS 1_13				
	14	IED_STS 1_14				
	15	IED_STS 1_15				
			Cancel	Submit		

16.3.14 Point

The protocol point number.

16.3.15 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.15.1 32 Pt. Control & Ind, Edit Outputs

Figure 16-7 Harris(M) Controls Configuration for 5000

Harris (M) Controls Configuration					
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1				
Point	Name	Execute Time			
0	IED_SBO 1_0	500			
1	IED_SBO 1_1	500			
2	IED_SBO 1_2	500			
3	IED_SBO 1_3	500			
4	IED_SBO 1_4	500			
5	IED_SBO 1_5	500			
6	IED_SBO 1_6	500			
7	IED_SBO 1_7	500			
8	IED_SBO 1_8	500			
9	IED_SBO 1_9	500			
10	IED_SBO 1_10	500			
11	IED_SBO 1_11	500			
12	IED_SBO 1_12	500			
13	IED_SBO 1_13	500			
14	IED_SBO 1_14	500			
15	IED_SBO 1_15	500			
	Cancel Submit				

16.3.16 Point

The protocol point number.

16.3.17 Name

Enter the name of the point or accept the default.

16.3.18 Execute Time

Enter the hold-in time for the control, or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.18.1 32 Pt. Analog In, Edit Inputs

Figure 16-8 Harris(M) Analog Input Configuration for 5000

Harris (M) Analog Input Configuration

Por	t ŧ	ŧ	2
IED) #	•	1

Port Name : Port 2 IED Name : HRS IED 1

-	Page 1 of 2		GoTo		Next >
Point	Name	C Min	C Max	EGU Min	EGU Max
0	IED_ANALOG 1_0	-2000	2000	-100	100
1	IED_ANALOG 1_1	-2000	2000	-100	100
2	IED_ANALOG 1_2	-2000	2000	-100	100
3	IED_ANALOG 1_3	-2000	2000	-100	100
4	IED_ANALOG 1_4	-2000	2000	-100	100
5	IED_ANALOG 1_5	-2000	2000	-100	100
6	IED_ANALOG 1_6	-2000	2000	-100	100
7	IED_ANALOG 1_7	-2000	2000	-100	100
8	IED_ANALOG 1_8	-2000	2000	-100	100
9	IED_ANALOG 1_9	-2000	2000	-100	100
10	IED_ANALOG 1_10	-2000	2000	-100	100
11	IED_ANALOG 1_11	-2000	2000	-100	100
12	IED_ANALOG 1_12	-2000	2000	-100	100
13	IED_ANALOG 1_13	-2000	2000	-100	100
14	IED_ANALOG 1_14	-2000	2000	-100	100
15	IED_ANALOG 1_15	-2000	2000	-100	100
					Cancel Submit

16.3.19 Point

The protocol point number.

16.3.20 Name

Enter the name of the point or accept the default.

16.3.21 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.22 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.23 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

16.3.24 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.24.1 8 Pt. 12 bit ACC In, Edit Inputs

Figure 16-9 Harris(M) Accumulator Configuration for 5000

Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1			
Point	Name			
0	IED_ACC 1_0			
1	IED_ACC 1_1			
2	IED_ACC 1_2			
3	IED_ACC 1_3			
4	IED_ACC 1_4			
5	IED_ACC 1_5			
6	IED_ACC 1_6			
7	IED_ACC 1_7			
	Cancel Submit			

Harris (M) Accumulator Configuration

16.3.25 Point

The protocol point number.

16.3.26 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in

the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.26.1 4 Pt. 24 bit ACC In, Edit Inputs

Figure 16-10 Harris(M) Accumulator Configuration for 5000

Harris (M) Accumulator Configuration								
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1							
Point	Name							
0	IED_ACC 1_0							
1	IED_ACC 1_1							
2	IED_ACC 1_2							
3	IED_ACC 1_3							
	Cancel Submit							

16.3.27 Point

The protocol point number.

16.3.28 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.28.1 4 Pt. 32 bit ACC In, Edit Inputs

Figure 16-11 Harris(M) Accumulator Configuration for 5000

Harris (M) Accumulator Configuration								
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1							
Point	Name							
0	IED_ACC 1_0							
1	IED_ACC 1_1							
2	IED_ACC 1_2							
3	IED_ACC 1_3							
	Cancel Submit							

The protocol point number.

16.3.30 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.30.1 6 Pt. Raise/Lower Out, Edit Outputs

Figure 16-12 Harris(M) Raise/Lower Configuration for 5000

Harris (M) R	aise/Lower Configuration
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1
Point	Name
1 - 0	IED_R/L 1_0
1 - 1	IED_R/L 1_1
1 - 2	IED_R/L 1_2
1 - 3	IED_R/L 1_3
1 - 4	IED_R/L 1_4
1 - 5	IED_R/L 1_5
	Cancel Submit

16.3.31 Point

The protocol point number.

16.3.32 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.32.1 4 Pt. Analog Out, Edit Outputs

Figure 16-13 Harris(M) Analog Output Configuration for 5000

Harris (M) Analog Output Configuration

Port # 2 Port Name : Port ED # : 1 IED Name : HRS_IED						
Point	Name	C Min	C Max	Egu Min	Egu Max	
0	IED_AO 1_0	0	4095	0	4095	
1	IED_AO 1_1	0	4095	0	4095	
2	IED_AO 1_2	0	4095	0	4095	
3	IED_AO 1_3	0	4095	0	4095	
				Cancel	Submit	

16.3.33 Point

The protocol point number.

16.3.34 Name

Enter the name of the point or accept the default.

16.3.35 C Min

Enter the Min count number from the IED vendor's documentation.

16.3.36 C Max

Enter the Max count number from the IED vendor's documentation.

16.3.37 EGU Min

Enter a minimum engineering unit value for the point.

16.3.38 EGU Max

Enter a maximum engineering unit value for the point.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.38.1 16 Pt. Digital Out, Edit Outputs

Figure 16-14 Harris(M) Digital Output Configuration for 5000

Harris (M) Digital Output Configuration				
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1			
Point	Name			
0				
-	IED_DO 1_0			
1	IED_DO 1_1			
2	IED_DO 1_2			
3	IED_DO 1_3			
4	IED_DO 1_4			
5	IED_DO 1_5			
6	IED_DO 1_6			
7	IED_DO 1_7			
8	IED_DO 1_8			
9	IED_DO 1_9			
10	IED_DO 1_10			
11	IED_DO 1_11			
12	IED_DO 1_12			
13	IED_DO 1_13			
14	IED_DO 1_14			
15	IED_DO 1_15			
	Cancel Submit			

16.3.39 Point

The protocol point number.

16.3.40 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.41 Slave Configuration Edit, Type 5500

From the Harris(M) IED Configuration screen, click Slave Config Edit. You will get the following screen.

Figure 16-15 Harris(M) IED Setup for 5500

Harris IED Setup					
Port # : 2 IED # : 1			Port Name : Port 2 IED Name : HRS_IED_1		
Port	Туре	Edit Inputs	Edit Outputs		
1	16 Pt Control & Ind 🛛 🖌	Edit	Edit		
2	16 Pt Analog In 🛛 🔽	Edit	Edit		
3	8 Pt 12 bit ACC In 🛛 💌	Edit	Edit		
4	8 Pt 24 bit ACC In 🛛 🖌	Edit	Edit		
5	6 Pt Raise/Lower Out 💌	Edit	Edit		
6	4 Pt Analog Out 💌	Edit	Edit		
7	16 Pt Digital Out 🛛 👻	Edit	Edit		
			Back		

16.3.42 Port

The physical port number.

16.3.43 Type

The type of point as shown above.

16.3.44 Edit Inputs

If the Harris(M) port has an input map, this button will be active.

16.3.45 Edit Outputs

If the Harris(M) port has an Output map, this button will be active.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

16.3.45.1 16 Pt. Control & Ind, Edit Inputs

Figure 16-16 Harris(M) Status Configuration for 5500

Harris (M) Status Configuration				
Port # 2 IED # : 1		Port Name IED Name : HR		
	Point	Name		
	0	IED_STS 1_0		
	1	IED_STS 1_1		
	2	IED_STS 1_2		
	3	IED_STS 1_3		
	4	IED_STS 1_4		
	5	IED_STS 1_5		
	6	IED_STS 1_6		
	7	IED_STS 1_7		
	8	IED_STS 1_8		
	9	IED_STS 1_9		
	10	IED_STS 1_10		
	11	IED_STS 1_11		
	12	IED_STS 1_12		
	13	IED_STS 1_13		
	14	IED_STS 1_14		
	15	IED_STS 1_15		
		Cancel	Submit	

16.3.46 Point

The protocol point number.

16.3.47 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

381

16.3.47.1 16 Pt. Control & Ind, Edit Outputs

Figure 16-17 Harris(M) Controls Configuration for 5500

Harris (M) Controls Configuration Port # 2 Port Name : Port 2				
IED # : 1	IE	D Name : HRS_IED_1		
Point	Name	Execute Time		
0	IED_SBO 1_0	500		
1	IED_SBO 1_1	500		
2	IED_SBO 1_2	500		
3	IED_SBO 1_3	500		
4	IED_SBO 1_4	500		
5	IED_SBO 1_5	500		
6	IED_SBO 1_6	500		
7	IED_SBO 1_7	500		
Cancel Submit				

16.3.48 Point

The protocol point number.

16.3.49 Name

Enter the name of the point or accept the default.

16.3.50 Execute Time

Enter the hold-in time for the control, or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.50.1 16 Pt. Analog In, Edit Inputs

Figure 16-18 Harris(M) Analog Input Configuration for 5500

Harris (M) Analog Input Configuration

 Port # 2 Port Name : Port IED # : 1 IED Name : HRS_IED					
Point	Name	C Min	C Max	EGU Min	EGU Max
0	IED_ANALOG 2_0	-2000	2000	-100	100
1	IED_ANALOG 2_1	-2000	2000	-100	100
2	IED_ANALOG 2_2	-2000	2000	-100	100
3	IED_ANALOG 2_3	-2000	2000	-100	100
4	IED_ANALOG 2_4	-2000	2000	-100	100
5	IED_ANALOG 2_5	-2000	2000	-100	100
6	IED_ANALOG 2_6	-2000	2000	-100	100
7	IED_ANALOG 2_7	-2000	2000	-100	100
8	IED_ANALOG 2_8	-2000	2000	-100	100
9	IED_ANALOG 2_9	-2000	2000	-100	100
10	IED_ANALOG 2_10	-2000	2000	-100	100
11	IED_ANALOG 2_11	-2000	2000	-100	100
12	IED_ANALOG 2_12	-2000	2000	-100	100
13	IED_ANALOG 2_13	-2000	2000	-100	100
14	IED_ANALOG 2_14	-2000	2000	-100	100
15	IED_ANALOG 2_15	-2000	2000	-100	100
					Cancel Submit

16.3.51 Point

The protocol point number.

16.3.52 Name

Enter the name of the point or accept the default.

16.3.53 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.54 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.55 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

16.3.56 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.56.1 8 Pt. 12 bit ACC In, Edit Inputs

Harris (M) Accumulator Configuration				
Port # 2	Port Name : Port 2			
IED # : 1	IED Name : HRS_IED_1			
Point	Name			
0	IED_ACC 3_0			
1	IED_ACC 3_1			
2	IED_ACC 3_2			
3	IED_ACC 3_3			
4	IED_ACC 3_4			
5	IED_ACC 3_5			
6	IED_ACC 3_6			
7	IED_ACC 3_7			
	Cancel Submit			

Figure 16-19 Harris(M) Accumulator Configuration for 5500

16.3.57 Point

The protocol point number.

16.3.58 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.58.1 8 Pt. 24 bit ACC In, Edit Inputs

Figure 16-20 Harris(M) Accumulator Configuration for 5500

Harris (M) Accumulator Configuration				
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1			
Point	Name			
0	IED_ACC 4_0			
1	IED_ACC 4_1			
2	IED_ACC 4_2			
3	IED_ACC 4_3			
4	IED_ACC 4_4			
5	IED_ACC 4_5			
6	IED_ACC 4_6			
7	IED_ACC 4_7			
	Cancel Submit			

16.3.59 Point

The protocol point number.

16.3.60 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.60.1 6 Pt. Raise/Lower Out, Edit Outputs

Figure 16-21 Harris(M) Raise/Lower Configuration for 5500

Harris (M) Raise/Lower Configuration				
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1			
Point	Name			
5 - 0	IED_R/L 5_0			
5 - 1	IED_R/L 5_1			
5 - 2	IED_R/L 5_2			
5 - 3	IED_R/L 5_3			
5 - 4	IED_R/L 5_4			
5 - 5	IED_R/L 5_5			
	Cancel Submit			

16.3.61 Point

The protocol point number.

16.3.62 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <</Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.62.1 4 Pt. Analog Out, Edit Outputs

Figure 16-22 Harris(M) Analog Output Configuration for 5500

Harris (M) Analog Output Configuration

		laiog output	ooninguration		
Port # 2 ED # : 1					ort Name : Port 2 ame : HRS_IED_1
Point	Name	C Min	C Max	Egu Min	Egu Max
0	IED_AO 6_0	0	4095	0	4095
1	IED_AO 6_1	0	4095	0	4095
2	IED_AO 6_2	0	4095	0	4095
3	IED_AO 6_3	0	4095	0	4095
				Cancel	Submit

16.3.63 Point

The protocol point number.

16.3.64 Name

Enter the name of the point or accept the default.

16.3.65 C Min

Enter the Min count number from the IED vendor's documentation.

16.3.66 C Max

Enter the Max count number from the IED vendor's documentation.

16.3.67 EGU Min

Enter a minimum engineering unit value for the point.

16.3.68 EGU Max

Enter a maximum engineering unit value for the point.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.68.1 16 Pt. Digital Out, Edit Outputs

Figure 16-23 Harris(M) Raise/Lower Configuration for 5500

Harris (M) Digital Output Configuration				
Port # 2 IED # : 1	Port Name : Port 2			
Point	IED Name : HRS_IED_1 Name			
0	IED_DO 7_0			
1	IED_DO 7_1			
2	IED_DO 7_2			
3	IED_DO 7_3			
4	IED_DO 7_4			
5	IED_DO 7_5			
6	IED_DO 7_6			
7	IED_D0 7_7			
8	IED_DO 7_8			
9	IED_DO 7_9			
10	IED_DO 7_10			
11	IED_DO 7_11			
12	IED_DO 7_12			
13	IED_DO 7_13			
14	IED_DO 7_14			
15	IED_DO 7_15			
	Cancel Submit			

16.3.69 Point

The protocol point number.

16.3.70 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.71 Slave Configuration Edit, Type 6000

From the Harris(M) IED Configuration screen, click Slave Config Edit. You will get the following screens.

Harris IED Setup Port #: 2 Port Name : Port 2 IED #: 1 IED Name : HRS_IED_1						
Port	Γ	Туре		Edit Inputs	Edit Outputs	
1		32 Pt Control & Ind	*	Edit	Edit	
2		63 Pt Control & Ind	*	Edit	Edit	
3		63 Pt Control & SOE	*	Edit	Edit	
4		32 Pt Analog In	*	Edit	Edit	
5		63 Pt Analog In	*	Edit	Edit	
6		8 Pt 12 bit ACC In	*	Edit	Edit	
7		8 Pt 24 bit ACC In	*	Edit	Edit	
					Back	

Figure 16-24 Harris(M) IED Setup for 6000, First Eight

Figure 16-25 Harris(M) IED Setup for 6000, Last Three

Harris IED Setup Port #: 2 Port Name : Port 2 IED #: 1 IED Name : HRS_IED_2						
Port	Туре	Edit Inputs	Edit Outputs			
1	6 Pt Raise/Lower Out 💌	Edit	Edit			
2	4 Pt Analog Out 🛛 👻	Edit	Edit			
3	16 Pt Digital Out 🛛 👻	Edit	Edit			
4	None 💌	Edit	Edit			
5	None 💌	Edit	Edit			
6	None 💌	Edit	Edit			
7	None 💌	Edit	Edit			
			Back			

16.3.72 Port

The physical port number.

16.3.73 Type

The type of point as shown above.

16.3.74 Edit Inputs

If the Harris(M) port has an input map, this button will be active.

16.3.75 Edit Outputs

If the Harris(M) port has an Output map, this button will be active.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED # : *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

16.3.75.1 32 Pt. Control & Ind, Edit Inputs

F

Figure 16-26 Harris(M) Status Configuration for 6000

Harris (M) Status Configuration				
Port # 2 ED # : 1		Port Nar IED Name : H	me : Port 2 HRS_IED_1	
r	Pa	age 1 of 2 GoTo Go	Next >>	
	Point	Name		
	0	IED_STS 1_0		
	1	IED_STS 1_1		
	2	IED_STS 1_2		
	3	IED_STS 1_3		
	4	IED_STS 1_4		
	5	IED_STS 1_5		
	6	IED_STS 1_6		
	7	IED_STS 1_7		
	8	IED_STS 1_8		
	9	IED_STS 1_9		
	10	IED_STS 1_10		
	11	IED_STS 1_11		
	12	IED_STS 1_12		
	13	IED_STS 1_13		
	14	IED_STS 1_14		
	15	IED_STS 1_15		
,		Cancel	Submit	

16.3.76 Point

The protocol point number.

16.3.77 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.77.1 32 Pt. Control & Ind, Edit Outputs

Figure 16-27 Harris(M) Controls Configuration for 6000

Harris (M) Controls Configuration				
Port # 2 IED # : 1	IED	Port Name : Port 2 Name : HRS_IED_1		
Point	Name	Execute Time		
0	IED_SBO 1_0	500		
1	IED_SBO 1_1	500		
2	IED_SBO 1_2	500		
3	IED_SBO 1_3	500		
4	IED_SBO 1_4	500		
5	IED_SBO 1_5	500		
6	IED_SBO 1_6	500		
7	IED_SBO 1_7	500		
8	IED_SBO 1_8	500		
9	IED_SBO 1_9	500		
10	IED_SBO 1_10	500		
11	IED_SBO 1_11	500		
12	IED_SBO 1_12	500		
13	IED_SBO 1_13	500		
14	IED_SBO 1_14	500		
15	IED_SBO 1_15	500		
	G	ancel Submit		

16.3.78 Point

The protocol point number.

16.3.79 Name

Enter the name of the point or accept the default.

16.3.80 Execute Time

Enter the hold-in time for the control, or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.80.1 63 Pt. Control & Ind, Edit Inputs

Figure 16-28 Harris(M) Status Configuration for 6000

Harris (M) Status Configuration				
Port # 2		Port Name : Port 2		
IED # : 1		IED Name : HRS_IED_1 Ige 1 of 4 GoTo Go Next >>		
	Point	Name		
	0	IED_STS 2_0		
	1	IED_STS 2_1		
	2	IED_STS 2_2		
	3	IED_STS 2_3		
	4	IED_STS 2_4		
	5	IED_STS 2_5		
	6	IED_STS 2_6		
	7	IED_STS 2_7		
	8	IED_STS 2_8		
	9	IED_STS 2_9		
	10	IED_STS 2_10		
	11	IED_STS 2_11		
	12	IED_STS 2_12		
	13	IED_STS 2_13		
	14	IED_STS 2_14		
	15	IED_STS 2_15		
		Cancel Submit		

16.3.81 Point

The protocol point number.

16.3.82 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.82.1 63 Pt. Control & Ind, Edit Outputs

Figure 16-29 Harris(M) Controls Configuration for 6000

Harris (M) Controls Configuration Port # 2 Port Name : Port 2				
IED # : 1		Name : HRS_IED_1		
	Page 1 of 2 GoTo Go	Next >>		
Point	Name	Execute Time		
0	IED_SBO 2_0	500		
1	IED_SBO 2_1	500		
2	IED_SBO 2_2	500		
3	IED_SBO 2_3	500		
4	IED_SBO 2_4	500		
5	IED_SBO 2_5	500		
6	IED_SBO 2_6	500		
7	IED_SBO 2_7	500		
8	IED_SBO 2_8	500		
9	IED_SBO 2_9	500		
10	IED_SBO 2_10	500		
11	IED_SBO 2_11	500		
12	IED_SBO 2_12	500		
13	IED_SBO 2_13	500		
14	IED_SBO 2_14	500		
15	IED_SBO 2_15	500		
	Car	icel Submit		

16.3.83 Point

The protocol point number.

16.3.84 Name

Enter the name of the point or accept the default.

16.3.85 Execute Time

Enter the hold-in time for the control, or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.85.1 63 Pt. Control & SOE, Edit Inputs

Figure 16-30 Harris(M) Status Configuration for 6000

Harris (M) Status Configuration				
Port # 2		Port Name : Port 2		
IED # : 1		IED Name : HRS_IED_1 Ige 1 of 4 GoTo Go Next >>		
	Point	Name		
	0	IED_STS 3_0		
	1	IED_STS 3_1		
	2	IED_STS 3_2		
	3	IED_STS 3_3		
	4	IED_STS 3_4		
	5	IED_STS 3_5		
	6	IED_STS 3_6		
	7	IED_STS 3_7		
	8	IED_STS 3_8		
	9	IED_STS 3_9		
	10	IED_STS 3_10		
	11	IED_STS 3_11		
	12	IED_STS 3_12		
	13	IED_STS 3_13		
	14	IED_STS 3_14		
	15	IED_STS 3_15		
		Cancel Submit		

16.3.86 Point

The protocol point number.

16.3.87 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.87.1 63 Pt. Control & SOE, Edit Outputs

Figure 16-31 Harris(M) Controls Configuration for 6000

Harris (M) Controls Configuration				
Port # 2 IED # : 1	IED	Port Name : Port 2 Name : HRS_IED_1		
IED # . 1	Page 1 of 2			
	GoTo Go	Next >>		
Point	Name	Execute Time		
0	IED_SBO 3_0	500		
1	IED_SBO 3_1	500		
2	IED_SBO 3_2	500		
3	IED_SBO 3_3	500		
4	IED_SBO 3_4	500		
5	IED_SBO 3_5	500		
6	IED_SBO 3_6	500		
7	IED_SBO 3_7	500		
8	IED_SBO 3_8	500		
9	IED_SBO 3_9	500		
10	IED_SBO 3_10	500		
11	IED_SBO 3_11	500		
12	IED_SBO 3_12	500		
13	IED_SBO 3_13	500		
14	IED_SBO 3_14	500		
15	IED_SBO 3_15	500		
Cancel Submit				

16.3.88 Point

The protocol point number.

16.3.89 Name

Enter the name of the point or accept the default.

16.3.90 Execute Time

Enter the hold-in time for the control, or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.90.1 32 Pt. Analog In, Edit Inputs

Figure 16-32 Harris(M) Analog Input Configuration for 6000

Harris (M) Analog Input Configuration

Ρ	ort	t #		2
IF	Ð	#	•	1

Port Name : Port 2 IED Name : HRS_IED_1

	Page 1	of 2	GoTo	Go	Next >>
Point	Name	C Min	C Max	EGU Min	EGU Max
0	IED_ANALOG 4_0	-2000	2000	-100	100
1	IED_ANALOG 4_1	-2000	2000	-100	100
2	IED_ANALOG 4_2	-2000	2000	-100	100
3	IED_ANALOG 4_3	-2000	2000	-100	100
4	IED_ANALOG 4_4	-2000	2000	-100	100
5	IED_ANALOG 4_5	-2000	2000	-100	100
6	IED_ANALOG 4_6	-2000	2000	-100	100
7	IED_ANALOG 4_7	-2000	2000	-100	100
8	IED_ANALOG 4_8	-2000	2000	-100	100
9	IED_ANALOG 4_9	-2000	2000	-100	100
10	IED_ANALOG 4_10	-2000	2000	-100	100
11	IED_ANALOG 4_11	-2000	2000	-100	100
12	IED_ANALOG 4_12	-2000	2000	-100	100
13	IED_ANALOG 4_13	-2000	2000	-100	100
14	IED_ANALOG 4_14	-2000	2000	-100	100
15	IED_ANALOG 4_15	-2000	2000	-100	100
					Cancel Submit

16.3.91 Point

The protocol point number.

16.3.92 Name

Enter the name of the point or accept the default.

16.3.93 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.94 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.95 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

16.3.96 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.96.1 63 Pt. Analog In, Edit Inputs

Figure 16-33 Harris(M) Analog Input Configuration for 6000

Harris (M) Analog Input Configuration

Port # 2 IED # : 1					_	Port Name : Port 2 IED Name : HRS_IED_1
		Page 1	of 4	GoTo	Go	Next >>
Р	Point	Name	C Min	C Max	EGU Min	EGU Max
	0	IED_ANALOG 5_0	-2000	2000	-100	100
	1	IED_ANALOG 5_1	-2000	2000	-100	100
	2	IED_ANALOG 5_2	-2000	2000	-100	100
	3	IED_ANALOG 5_3	-2000	2000	-100	100
	4	IED_ANALOG 5_4	-2000	2000	-100	100
	5	IED_ANALOG 5_5	-2000	2000	-100	100
	6	IED_ANALOG 5_6	-2000	2000	-100	100
	7	IED_ANALOG 5_7	-2000	2000	-100	100
	8	IED_ANALOG 5_8	-2000	2000	-100	100
	9	IED_ANALOG 5_9	-2000	2000	-100	100
	10	IED_ANALOG 5_10	-2000	2000	-100	100
	11	IED_ANALOG 5_11	-2000	2000	-100	100
	12	IED_ANALOG 5_12	-2000	2000	-100	100
	13	IED_ANALOG 5_13	-2000	2000	-100	100
	14	IED_ANALOG 5_14	-2000	2000	-100	100
	15	IED_ANALOG 5_15	-2000	2000	-100	100
						Cancel Submit

S2200-AAA-00004

16.3.97 Point

The protocol point number.

16.3.98 Name

Enter the name of the point or accept the default.

16.3.99 C Min

Enter the Min count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.100 C Max

Enter the Max count number from the IED vendor's documentation. All entries in this column may be changed at once by clicking on the header.

16.3.101 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

16.3.102 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.102.1 8 Pt. 12 bit ACC In, Edit Inputs

Figure 16-34 Harris(M) Accumulator Configuration for 6000

Harris (M) Accumulator Configuration								
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1							
Point	Name							
0	IED_ACC 6_0							
1	IED_ACC 6_1							
2	IED_ACC 6_2							
3	IED_ACC 6_3							
4	IED_ACC 6_4							
5	IED_ACC 6_5							
6	IED_ACC 6_6							
7	IED_ACC 6_7							
	Cancel Submit							

16.3.103 Point

The protocol point number.

16.3.104 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.104.1 8 Pt. 24 bit ACC In, Edit Inputs

Figure 16-35 Harris(M) Accumulator Configuration for 6000

Harris (M) Accumulator Configuration								
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1							
Point	Name							
0	IED_ACC 7_0							
1	IED_ACC 7_1							
2	IED_ACC 7_2							
3	IED_ACC 7_3							
4	IED_ACC 7_4							
5	IED_ACC 7_5							
6	IED_ACC 7_6							
7	IED_ACC 7_7							
	Cancel Submit							

16.3.105 Point

The protocol point number.

16.3.106 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.106.1 6 Pt. Raise/Lower Out, Edit Outputs

Figure 16-36 Harris(M) Raise/Lower Configuration for 6000

Harris (M) Raise/Lower Configuration							
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1						
Point	Name						
1 - 0	IED_R/L 1_0						
1-1	IED_R/L 1_1						
1 - 2	IED_R/L 1_2						
1-3	IED_R/L 1_3						
1 - 4	IED_R/L 1_4						
1 - 5	IED_R/L 1_5						
	Cancel Submit						

16.3.107 Point

The protocol point number.

16.3.108 Name

Enter the name of the point or accept the default.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.3.108.1 4 Pt. Analog Out, Edit Outputs

Figure 16-37 Harris(M) Analog Output Configuration for 6000

Harris (M) Analog Output Configuration

name (iii) Analog output conliguration									
Port # 2 Port Name : Port IED # : 1 IED Name : HRS_IED_									
Point	Name	C Min	C Max	Egu Min	Egu Max				
0	IED_AO 1_0	0	4095	0	4095				
1	IED_AO 1_1	0	4095	0	4095				
2	IED_AO 1_2	0	4095	0	4095				
3	IED_AO 1_3	0	4095	0	4095				
				Cancel	Submit				

16.3.109 Point

The protocol point number.

16.3.110 Name

Enter the name of the point or accept the default.

16.3.111 C Min

Enter the Min count number from the IED vendor's documentation.

16.3.112 C Max

Enter the Max count number from the IED vendor's documentation.

16.3.113 EGU Min

Enter a minimum engineering unit value for the point.

16.3.114 EGU Max

Enter a maximum engineering unit value for the point.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

16.3.114.1 16 Pt. Digital Out, Edit Outputs

Figure 16-38 Harris(M) Raise/Lower Configuration for 6000

Harris (M) Digital Output Configuration					
Port # 2 IED # : 1	Port Name : Port 2 IED Name : HRS_IED_1				
Point	Name				
0	IED_DO 1_0				
1	IED_DO 1_1				
2	IED_DO 1_2				
3	IED_DO 1_3				
4	IED_DO 1_4				
5	IED_DO 1_5				
6	IED_DO 1_6				
7	IED_DO 1_7				
8	IED_DO 1_8				
9	IED_DO 1_9				
10	IED_DO 1_10				
11	IED_DO 1_11				
12	IED_DO 1_12				
13	IED_DO 1_13				
14	IED_DO 1_14				
15	IED_DO 1_15				
	Cancel Submit				

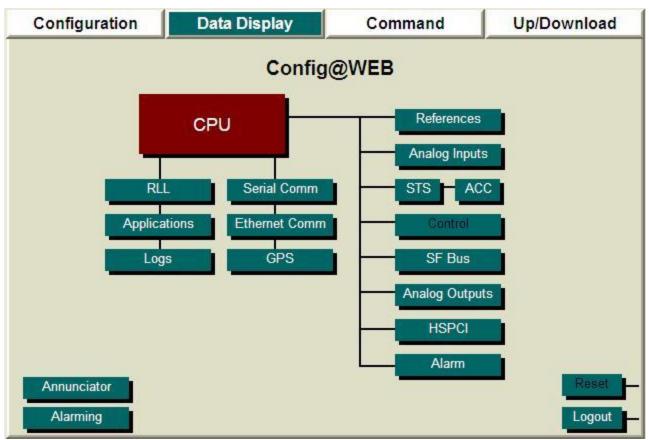
16.3.115 Point

The protocol point number.

16.3.116 Name

Enter the name of the point or accept the default.

Navigation


Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

16.4 **Data Display**

Click the Data Display tab as shown in Figure 2-18.

Figure 16-39 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Figure $16-40$	Display	Communication	Port Data
rigule 10-40	Display	Communication	r on Data

Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data			
Port #1	ĸ	K	Port 1	DNPR	View	Port Data			
Port #2	К	К	Port 2	Harris (M)	View	Port Data			
Port #3	К	К	Port 3	None	View	Port Data			
Port #4	К	К	Port 4	None	View	Port Data			
Port #5	К	К	Port 5	None	View	Port Data			
Port #6	К	К	Port 6	None	View	Port Data			
Port #7	К	К	Port 7	None	View	Port Data			
Port #8	К	К	Port 8	None	View	Port Data			
Port #9	К	К	Port 9	None	View	Port Data			
Port #10	К	К	Port 10	None	View	Port Data			
Port #11	К	К	Port 11	None	View	Port Data			
Port #12	К	К	Port 12	None	View	Port Data			
Communication Associations Config Back									

Display Communication Port Data

16.4.1 Port Number

Physical Port number of the RTU.

16.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

16.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

16.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

16.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

16.4.3 Name

The port name given during configuration or default name accepted.

16.4.4 Protocol

The configured protocol for this port.

16.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

16.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

16.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

S2200-AAA-00004

16.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20. The Comm Counters are the same for all three types of protocol.

H	larris (M) Communication Counte	rs Display
Port # : 2		Port Name : Port 2
Point	Counter Name	Counts
1	Messages Sent	1452
2	Messages Received	0
3	No Response	1451
4	B4 Timer Violations	0
5	IB Timer Violations	0
6	Multiple ID Byte detections	0
7	Security Errors	0
8	Parity Errors	0
9	Overrun Errors	0
10	Framing Errors	0
11	Hardware DCD Errors	0
12	Hardware CTS Errors	0
Data Trap	Configure	
IED Comr	n Counters View	
Reset Co	mm Counters Reset	
		Dark
		Back

Figure 16-41 Harris(M) Communication Counters Display

16.4.9 Point Number

A logical point number for reference only.

16.4.10 Counter Name

The following counters are monitored:

16.4.10.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

16.4.10.2 Messages Received

This indicates the cumulative number of received messages since the last reset or power-up.

16.4.10.3 No Response

This indicates the cumulative number of sent messages that were not responded to since the last reset or power-up.

16.4.10.4 B4 Timer Violations

This indicates the cumulative number of B4 Timer violations. This count can be affected by the setting of the B4 Time in configuration.

16.4.10.5 IB Timer Violations

This indicates the cumulative number of Interbyte timer violations since the last reset or power-up. This count can be affected by the setting of the Interbyte Time in configuration.

16.4.10.6 Multiple ID Byte detections

This indicates the cumulative number of Multiple ID Byte detections since the last reset or power-up.

16.4.10.7 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

16.4.10.8 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

16.4.10.9 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

16.4.10.10 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

16.4.10.11 Hardware DCD Errors

This indicates the cumulative number of DCD errors since the last reset or power-up.

16.4.10.12 Hardware CTS Errors

This indicates the cumulative number of CTS errors since the last reset or power-up.

16.4.11 Counts

The counts for each type of Counter.

16.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

16.4.13 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

	Harris (M) IED Comm Counters Display										
Ρ	ort # : 2	1								Port Nam	ne : Port 2
	IED #	IED Name	Messages Sent	Valid Replies						Message Errors	
	1	HRS_IED_1	2725	0	2724	0	0	0	0	0	12
C	PortSta	itus									Done

16.4.13.1 IED

The number of the IED

16.4.13.2 IED Name

The name of the IED

16.4.13.3 Messages Sent

Messages sent to this IED since the last reset or since the last time the counters were cleared.

16.4.13.4 Valid Replies

Valid messages received from this IED since the last reset or since the last time the counters were cleared.

16.4.13.5 No Replies

This indicates the cumulative number of sent messages that were not responded to since the last reset or power-up.

16.4.13.6 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

16.4.13.7 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

16.4.13.8 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

16.4.13.9 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

16.4.13.10 Message Errors

This indicates the cumulative number of message errors since the last reset or power-up.

16.4.13.11 Last Err Opcode

The "Last Err Opcode" field on IED error counters display contains the Harris Operation Code for the last message that failed to get a response. The operation codes (in decimal) are as follows

- 0 Data Dump (analogs and accumulators)
- 3 Status Change Check
- 4 Status Change Dump
- 5 Status Dump (used for integrity check and when there is a change overflow)
- 6 Control Point Arm
- 7 Control Point Operate
- 8 Raise/Lower
- 9 Set Point Arm (Digital output or analog output)
- 10 Set Point Operate
- 11 Power Fail Reset
- 12 Port Status Scan
- 17 SOE Time Synchronization
- 18 SOE Change Dump
- 19 SOE Time Sync Adjust
- 23 Time Synchronization (non-SOE)
- 24 Set Freeze Interval

16.4.14 Port Status

On the Port Status display (shown below), the possible error codes are as follows

P/F Power Fail

- O/L Off line (port not configured)
- M/F Message Fail (previous message was invalid)
- SOE SOE change available for download

Harris (M) Harris Port Status										
Port # : 2 Port Name : Port								ame : Port 2		
IED #	IED Name	Changes	OverAll	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7
1	HRS_IED_1	0								
CommCounters										
										Done

16.4.15 Reset Status Button

Click this button to reset the status of all Harris ports.

16.4.16 Comm Counters Button

Click this button to return to the individual Comm Counters view.

16.4.17 Done

Click this button to return to the overall Comm Counters view.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

16.4.18 Display Port Data

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

Figure 16-42 Harris(M) IED Display

	Harris Master IED Display									
Port # : 2 Port Name : Port 2										
IED #	IED Name	IED Address	Frozen Accum	Туре	On Scan	Slave Data				
1	HRS_IED_1	1	Y	6000	Y	View				
						Back				

16.4.19 IED

The logical number of the IED on this communication channel.

16.4.20 IED Name

The name that was chosen, or accepted as default, during configuration.

16.4.21 IED Address

The IED Address chosen during configuration.

16.4.22 Frozen Accum

Y (Yes) means the frozen accumulators will be displayed.

16.4.23 Type

The Harris protocol type.

16.4.24 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

16.4.25 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

e						
Harris IED Display						
Port # : 2 Port Name : Port 2 IED # : 1 IED Name : HRS_IED_1						
Туре	Number	View				
Analog Inputs	32	View				
Binary Inputs	33	View				
Counters	12	View				
Analog Outputs	4	View				
		Back				

Figure 16-43 Harris(M) IED Display

16.4.26 Type

The type of point.

16.4.27 Number

The number of points from your IED.

16.4.28 View

Click the View button to view points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the previous screen.

16.5 Analog Inputs

From the Harris(M) IED Display screen, click View for Analog Inputs to get the screen shown below.

Eigung 16 A	A Homie (M) Amolog Im	muto Diamlory
FIGURE 10-4	4 Harrisuvi) Analog In	puts Display
1.80.0 10 .		,	

	Harris Analog Inputs Display						
Port # :	2				Poi	rt Name : Port 2	
		Page1	of 2 Go To	Go		Next>>	
Port	Point	Device Name	Point Name	Point Status	Point Value	Point Counts	
2	0	HRS_IED_1	IED_ANALOG 2_0	F	0.000	0	
2	1	HRS_IED_1	IED_ANALOG 2_1	F	0.000	0	
2	2	HRS_IED_1	IED_ANALOG 2_2	F	0.000	0	
2	3	HRS_IED_1	IED_ANALOG 2_3	F	0.000	0	
2	4	HRS_IED_1	IED_ANALOG 2_4	F	0.000	0	
2	5	HRS_IED_1	IED_ANALOG 2_5	F	0.000	0	
2	6	HRS_IED_1	IED_ANALOG 2_6	F	0.000	0	
2	7	HRS_IED_1	IED_ANALOG 2_7	F	0.000	0	
2	8	HRS_IED_1	IED_ANALOG 2_8	F	0.000	0	
2	9	HRS_IED_1	IED_ANALOG 2_9	F	0.000	0	
2	10	HRS_IED_1	IED_ANALOG 2_10	F	0.000	0	
2	11	HRS_IED_1	IED_ANALOG 2_11	F	0.000	0	
2	12	HRS_IED_1	IED_ANALOG 2_12	F	0.000	0	
2	13	HRS_IED_1	IED_ANALOG 2_13	F	0.000	0	
2	14	HRS_IED_1	IED_ANALOG 2_14	F	0.000	0	
2	15	HRS_IED_1	IED_ANALOG 2_15	F	0.000	0	
						Back	

16.5.1 Port

Port corresponds to the type of point assigned to this port number during configuration.

16.5.2 Point

Protocol logical point number.

16.5.3 Device Name

The name of the device from which the point originates.

16.5.4 Point Name

The name of the point assigned during configuration.

16.5.5 Point Status

Please see the Config@WEB Secure Software Users Guide.

16.5.6 Point Value

The engineering unit (EGU) value.

16.5.7 Point Counts

The counts from the IED.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to

the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

16.6 **Status Inputs**

From the Harris(M) IED Display screen, click View for Binary Inputs to get the screen shown below.

Figure 16-45 Harris(M) Status Inputs Display

Harris Status Inputs Display

		Page 1of 3	Go To GO		1	Next>
Port	Point	Device Name	Point Name	Point Status	Point State	•
0	-1	HRS_IED_1	HRSM_COMM_STS		CLOSE	•
1	0	HRS_IED_1	IED_STS 1_0	F	OPEN	•
1	1	HRS_IED_1	IED_STS 1_1	F	OPEN	•
1	2	HRS_IED_1	IED_STS 1_2	F	OPEN	•
1	3	HRS_IED_1	IED_STS 1_3	F	OPEN	•
1	4	HRS_IED_1	IED_STS 1_4	F	OPEN	•
1	5	HRS_IED_1	IED_STS 1_5	F	OPEN	•
1	6	HRS_IED_1	IED_STS 1_6	F	OPEN	•
1	7	HRS_IED_1	IED_STS 1_7	F	OPEN	•
1	8	HRS_IED_1	IED_STS 1_8	F	OPEN	•
1	9	HRS_IED_1	IED_STS 1_9	F	OPEN	•
1	10	HRS_IED_1	IED_STS 1_10	F	OPEN	•
1	11	HRS_IED_1	IED_STS 1_11	F	OPEN	•
1	12	HRS_IED_1	IED_STS 1_12	F	OPEN	•
1	13	HRS_IED_1	IED_STS 1_13	F	OPEN	•
1	14	HRS_IED_1	IED_STS 1_14	F	OPEN	•

Note: The first point is reserved for Communication Status. HRSM_COMM_STS indicates whether or not this IED is in good communications. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

16.6.1 Port

Port corresponds to the type of point assigned to this port number during configuration.

16.6.2 Point

Protocol logical point number.

16.6.3 Device Name

The name of the device from which the point originates.

16.6.4 Point Name

The name of the point assigned during configuration.

16.6.5 Point Status

Please see the Config@WEB Secure Software Users Guide.

16.6.6 Point State

Indicates that point is either OPEN or CLOSED.

16.6.7 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

16.7 Accumulator Inputs

From the Harris(M) IED Display screen, click View for Counters to get the screen shown below.

Figure 16-46 Harris(M) Counter Inputs Display

	_	Har	ris Accumulators Display		
ort#:	2	Page1 of 1	Go To Go		Port Name : Port
Port	Point	Device Name	Point Name	Point Status	Count
3	0	HRS_IED_1	IED_ACC 3_0	F	
3	1	HRS_IED_1	IED_ACC 3_1	F	
3	2	HRS_IED_1	IED_ACC 3_2	F	
3	3	HRS_IED_1	IED_ACC 3_3	F	
3	4	HRS_IED_1	IED_ACC 3_4	F	
3	5	HRS_IED_1	IED_ACC 3_5	F	
3	6	HRS_IED_1	IED_ACC 3_6	F	
3	7	HRS_IED_1	IED_ACC 3_7	F	
4	0	HRS_IED_1	IED_ACC 4_0	F	
4	1	HRS_IED_1	IED_ACC 4_1	F	
4	2	HRS_IED_1	IED_ACC 4_2	F	
4	3	HRS_IED_1	IED_ACC 4_3	F	
5	0	HRS_IED_1	IED_ACC 5_0	F	
5	1	HRS_IED_1	IED_ACC 5_1	F	
5	2	HRS_IED_1	IED_ACC 5_2	F	
5	3	HRS_IED_1	IED_ACC 5_3	F	
					Back

16.7.1 Port

Port corresponds to the type of point assigned to this port number during configuration.

16.7.2 Point

Protocol logical point number.

16.7.3 Device Name

The name of the device from which the point originates.

16.7.4 Point Name

The name of the point assigned during configuration.

16.7.5 Point Status

Please see the Config@WEB Secure Software Users Guide.

16.7.6 Count

The accumulated count.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

16.8 Analog Outputs

From the Harris(M) IED Display screen, click View for Analog Outputs to get the screen shown below.

Figure 16-47	Harris(M) Analog Outputs Display
Harri	s Analog Outputs Display

	harris Analog Outputs Display						
Port # :	2				Po	t Name : Port 2	
		Page1	of 1 Go To	Go			
Port	Point	Device Name	Point Name	Point Status	Point Value	Point Counts	
6	0	HRS_IED_1	IED_AO 6_0	F	0	0.000	
6	1	HRS_IED_1	IED_AO 6_1	F	0	0.000	
6	2	HRS_IED_1	IED_AO 6_2	F	0	0.000	
6	3	HRS_IED_1	IED_AO 6_3	F	0	0.000	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
						Back	

16.8.1 Port

Port corresponds to the type of point assigned to this port number during configuration.

16.8.2 Point

Protocol logical point number.

16.8.3 Device Name

The name of the device from which the point originates.

16.8.4 Point Name

The name of the point assigned during configuration.

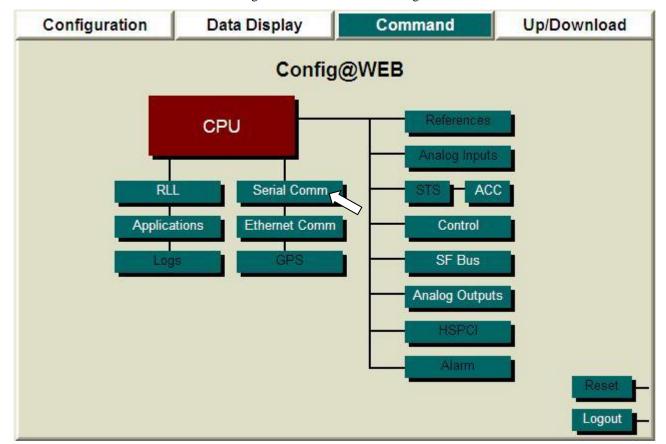
16.8.5 Point Status

Please see the Config@WEB Secure Software Users Guide.

16.8.6 Point Value

The engineering unit (EGU) value.

16.8.7 Point Counts


The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

16.9 **Command Serial Comm**

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

Figure 16-48 Command Tab Page

Figure 16-49 Serial Comm Command Communications Port Data	
Commond Communication Dout Data	

Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode
Port #1	К	K	Port 1	Harris (R)	Port Data	Normal 💌
Port #2	К	ĸ	Port 2	Harris (M)	Port Data	Normal 💌
Port #3	К	K	Port 3	None	Port Data	Normal 💌
Port #4	К	ĸ	Port 4	None	Port Data	Normal 🗠
Port #5	К	K	Port 5	None	Port Data	Normal 👻
Port #6	К	K	Port 6	None	Port Data	Normal 🗠
Port #7	К	K	Port 7	None	Port Data	Normal 🗠
Port #8	К	K	Port 8	None	Port Data	Normal 🗠
Port #9	К	K	Port 9	None	Port Data	Normal 🗠
Port #10	К	К	Port 10	None	Port Data	Normal 🗠
Port #11	К	К	Port 11	None	Port Data	Normal 🗠
Port #12	К	ĸ	Port 12	None	Port Data	Normal 🗸

The resultant screen will be similar to Figure 2-31. Click on the Command button as shown.

Figure 16-50 Harris(M) IED Command

Harris (M) IED Command								
Port # :	Port # : 2 Port Name : Port 2							
IED #	IED Name	IED Address	On Scan	Slave Data				
1	HRS_IED_1	1	Y	Command				
				Back				

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command various Outputs.

Figure 16-51 Harris(M) IED Command

Harris IED Command				
Port # : 2 IED # : 1		Port Name : Port 2 IED Name : HRS_IED_1		
Port	Туре	Command Outputs		
1	32CI	Command		
2	32ANA	Command		
3	8ACC12	Command		
4	4ACC24	Command		
5	6RL	Command		
6	4AO	Command		
7	16DO	Command		
		Back		

Click on the Command button for the type of point. The first screen below is the 32 Pt Control & Indication after either a Trip or Close has been selected, then Executed with the Execute button.

Port	Point	Name	P	Point Operations			
1	0	IED_SBO 1_0	 Trip 	O Close	Execute		
1	1	IED_SB0 1_1	🔿 Trip	O Close	Execute		
1	2	IED_SB0 1_2	🔿 Trip	O Close	Execute		
1	3	IED_SB0 1_3	🔿 Trip	O Close	Execute		
1	4	IED_SB0 1_4	🔿 Trip	O Close	Execute		
1	5	IED_SB0 1_5	🔿 Trip	O Close	Execute		
1	6	IED_SB0 1_6	🔿 Trip	O Close	Execute		
1	7	IED_SB0 1_7	🔿 Trip	O Close	Execute		
1	8	IED_SB0 1_8	🔿 Trip	O Close	Execute		
1	9	IED_SB0 1_9	🔿 Trip	O Close	Execute		
1	10	IED_SB0 1_10	🔿 Trip	O Close	Execute		
1	11	IED_SB0 1_11	🔿 Trip	O Close	Execute		
1	12	IED_SB0 1_12	🔿 Trip	O Close	Execute		
1	13	IED_SB0 1_13	🔿 Trip	O Close	Execute		
1	14	IED_SB0 1_14	🔿 Trip	O Close	Execute		
1	15	IED_SB0 1_15	🔿 Trip	O Close	Execute		

Harris (M) Controls Command

T

The next screen is the 6 Pt Raise/Lower after either a Raise or Lower has been selected, then Executed with the Execute button. Notice that the pulse time is adjustable.

Figure 16-53 Harris(M) 6 Pt Raise/Lower Controls Command

Harris (M) Raise/Lower Output Command Port # 2 Port Name : Port 2 IED # : 1 Port Name : HRS_IED_1							
Port Point Name Point Operations Pulse Time (sec/10) Operate							
5	0	IED_R/L 5_0		10	Execute		
5	1	IED_R/L 5_1	O Raise O Lower	10	Execute		
5	2	IED_R/L 5_2	O Raise O Lower	10	Execute		
5	3	IED_R/L 5_3	O Raise O Lower	10	Execute		
5	4	IED_R/L 5_4	O Raise O Lower	10	Execute		
5	5	IED_R/L 5_5	O Raise O Lower	10	Execute		
aise on	IED_R/L	5_0 : Successful			Back		

The next screen is the 4 Pt AO after a Value has been entered, then Executed with the Execute button.

Figure 16-54 Harris(M) 4 Pt Analog Outputs Command	ıd
--	----

Harris (M) Analog Outputs Command						
Port # :	-				t Name : Port 2	
IED # : 1	L			_	ne : HRS_IED_1	
		Page 1 of 1	Go To Go			
Port	Point	Name	Range	Value	Operation	
6	0	IED_AO 6_0	0.000 to 4095.000	2000.000	Execute	
6	1	IED_A0 6_1	0.000 to 4095.000	0.000	Execute	
6	2	IED_A0 6_2	0.000 to 4095.000	0.000	Execute	
6	3	IED_AO 6_3	0.000 to 4095.000	0.000	Execute	
IED_AO	6_0:S	uccess			Back	

The next screen is the 16 Pt DO after either an Open or a Close has been entered, then Executed with the Execute button.

ort # 2 D # : 1					lame : Port : HRS_IED_
Port	Point	Name	Po	int Operatior	าร
7	0	IED_D0 7_0	 Open 	O Close	Execute
7	1	IED_D0 7_1	🔘 Open	O Close	Execute
7	2	IED_D0 7_2	🔘 Open	O Close	Execute
7	3	IED_D0 7_3	🔘 Open	O Close	Execute
7	4	IED_D0 7_4	🔿 Open	O Close	Execute
7	5	IED_D0 7_5	🔘 Open	O Close	Execute
7	6	IED_D0 7_6	🔿 Open	O Close	Execute
7	7	IED_D0 7_7	🔿 Open	O Close	Execute
7	8	IED_D0 7_8	🔘 Open	O Close	Execute
7	9	IED_D0 7_9	🔘 Open	O Close	Execute
7	10	IED_D0 7_10	🔘 Open	O Close	Execute
7	11	IED_D0 7_11	🔘 Open	O Close	Execute
7	12	IED_D0 7_12	🔘 Open	O Close	Execute
7	13	IED_D0 7_13	🔿 Open	O Close	Execute
7	14	IED_D0 7_14	🔘 Open	O Close	Execute
7	15	IED_D0 7_15	O Open	O Close	Execute

Figure 16-55 Harris(M) 16 Pt Digital Output Command

17 JEM2 ASCII

17.1 **Communication Port Configuration**

The JEM2 ASCII protocol is a protocol that communicates between the RTU and a JEM2 ASCII meter. The RTU may be configured to periodically poll one or more JEM2 ASCII meters.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click JEM2 ASCII from the Protocol drop-down menu as shown.

		on Port Configur				
Port Number RTS DTR Confi		Protocol		Configure Protocol	Point Operations	Copy o Port
Port #1 K 💌 K 💌	<u>Port 1</u>	DNPR	•	Port 01	Map Points	Сору
Port #2 K V K V IRQ6	Port 2	JEM2 ASCII	-	Port 02	Configure	Сору
Port #3 K • K • IKQ0	Port 3	None - RTU-IED -	1	Port 03	-	Сору
Port #4 K 💌 K 💌	Port 4	2179 Arbiter		Port 04		Сору
Port #5 K 💌 K 💌	Port 5	C2020(M)		Port 05	-	Сору
Port #6 K • K •	Port 6	C2100H(M) DNPM		Port 06	-	Сору
Port #7 K V KV	Port 7	Electran		Port 07	-	Сору
Port #8 K 💌 K 💌	Port 8	Harris (M)		Port 08	-	Сору
Port #9 K • K •	Port 9	Incom JEM2 ASCII		Port 09	-	Сору
Port #10 K • K •	Port 10	Modbus(M) Quantum		Port 10	-	Сору
Port #11 K V K V	Port 11	SEL		Port 11	-	Сору
Port #12 K 🔻 K 💌	<u>Port 12</u>	Series V(M) Symax		Port 12		Сору
Communication Associations	Config	Tickle Transdata				Bac
		Tunnel MTU-RTU	Ľ			
		8979				
		C2100H CDC I				
		CDCI				
		DNPR				
		FM				
		Harris (R)				
		IDLC L&N				
17.1.1 Por	t Number	LOIN	1			
_	ort number of the RTU					

Figure 17-1 JEM2 ASCII Communication Port Configuration

Physical Port number of the RTU.

17.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

420

17.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

17.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

17.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

17.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name					
Name	Port	1			
		Cancel	Submit		

17.1.4 Protocol

From the drop-down list, select the protocol for this port.

17.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

17.1.6 Point Operations

Click this button to assign points.

17.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

17.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

17.2 **Configure Protocol**

Under the heading Configure Protocol, click Port *n* to configure the JEM2 ASCII port. As a minimum, you must enter the "Number of IEDs" this port will be connected to. You may accept all other defaults or fill in the form according to the information following Figure 2-2.

Figure 17-2 J	JEM2 ASCII Commu	nication Channel	Configuration
---------------	------------------	------------------	---------------

JEM2A N	leter Commun	ication Chann	el Setup
---------	--------------	---------------	----------

	Port#:4	Port Name : Port 4
	Number of IEDs	1
	Baud Rate *	600 💌
	Parity *	Even 💌
	CTS Delay *	20 (ms)
	Rx Timeout *	5000 (ms)
	Interbyte Time *	250 (ms)
	Retries Before Failing Points	3 (times)
Default: 0.	Poll Time	1000 (ms)
Range: 0 to 32.	Ca	ncel Submit

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

17.2.1 Number of IEDs (0 – 32)

Enter the number of IEDs connected to this port. The default setting is 0.

17.2.2 Baud Rate (300 – 19200)

From the drop-down menu, select the baud rate. The default setting is 600.

17.2.3 Parity (None, Odd, Even)

From the drop-down menu, select the parity for the associated channel. The default setting is Even.

17.2.4 CTS Delay (0 – 250ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 20.

Note: For the RS485 ports on any Telvent RTU, the RTS (Request To Send) signal will stay ON unless a non-zero value is entered for CTS (Clear To Send) in the communication interface. This means the RTU will send, but not receive. Always enter a non-zero value for CTS in the RS485 port communications user interface.

17.2.5 Rx Timeout (0 – 30,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. The default setting is 5000ms.

17.2.6 Interbyte time (0 – 250ms)

Enter the interbyte time for the associated channel. The interbyte time is the time allowed for the next byte of a message to be received after a byte has been accepted before the RTU discards the partial message and begins looking for the first byte of a new message. It is recommended that you increase the delay when using frequency-hopping radios. The default setting is 250 msec.

17.2.7 Retries Before Failing Points (0-99)

Enter the number of times the RTU will attempt communications with a device before marking all points attached to the device as failed. The default setting is 3.

17.2.8 Poll Time (0 – 10000ms)

Enter the desired length of time between polls. The default is 1000ms.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

17.3 **Point Operations**

From the Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Figu	ire 17-3	IED Co	onfiguratio	n
IEM2	ASCILL		onfigurat	tion

	SEM2 ASCHIED Configuration						
Port # : 2	1			Po	ort Name : Port 2		
IED #	IED Name	IED Address	On Scan	Slave Config	Copy to IEDn		
1	JEM2A_IED_1	1	Y	Edit	Сору		
					Back		

17.3.1 IED

The logical number of the IED on this communication channel.

17.3.2 IED Name

Click on the IED Name. A pop-up window will appear. See section 6.3.6.1 above.

17.3.3 IED Address

Reflects the entry in the pop-up menu. See section 6.3.6.1 above.

17.3.4 On Scan

Reflects the entry in the pop-up menu. See section 6.3.6.1 above.

17.3.5 Slave Config

Click the Edit to edit the IED points. See section "4.5.16.1 Slave Configuration Edit" on page 115.

17.3.6 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

17.3.6.1 IED Name & Address Configuration

When you click the name of the IED (in blue characters), a pop-up menu will appear, as shown in Figure 2-6. Edit this pop-up window according to the directions below. After editing, your choices are reflected as explained under Figure 2-5.

JEM2 ASCII IED Configuration							
Port#:2				P	ort Name : Port 2		
IED #	IED Name	IED Address	On Scan	Slave Config	Copy to IEDn		
1	JEM2A_IED_1	1	Y	Edit	Сору		
	IED #1 Configuration			х	Back		
	IED Name	JEM2A_I	ED_1]			
	IED Address	1					
	On Scan *	⊙Yes (⊖ No	Set			

Figu	re 17-4	IED	Config	uration
E 8 8 0	A C C U		A	

17.3.7 IED Name

Accept the default name or type a name of your choosing.

17.3.8 IED Address (1 – 99)

Enter the IED address. The default is 1.

17.3.9 On Scan

Accept the default (Yes) to place the IED on Scan. If you click No, the IED will not be polled.

Note: The IED may be switched On Scan to Off Scan and vice versa without the need to reboot.

17.3.10 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

17.3.10.1 Slave Configuration Edit

17.3.11 Slave Config

Click the Edit button to continue. A screen similar to Figure 2-10 will appear. The JEM2 ASCII meter has 20 working registers. All twenty are automatically assigned.

	1 1541		comgu	iunon	
	JEM2 AS	SCII Mete	r Confi	guratior	ı
Port # : 2 IED # : 1				IE	Port Name : Port 2 ED Name : JEM2A_IED_1
	Page 1	1 of 2	GoTo	Go	Next >>
	Point		Name		
	0	WORKING	_REG_0		
	1	WORKING	_REG_1		
	2	WORKING	_REG_2		
	3	WORKING	_REG_3		
	4	WORKING	_REG_4		
	5	WORKING	_REG_5		
	6	WORKING	_REG_6		
	7	WORKING	_REG_7		
	8	WORKING	_REG_8		
	9	WORKING	_REG_9		
	10	STORAGE	_REG_10		
	11	STORAGE	_REG_11		
	12	STORAGE	_REG_12		
	13	STORAGE	_REG_13		
	14	STORAGE	_REG_14		
	15	STORAGE	_REG_15		
		Ca	ancel	Submit	

Figure 17-5 IED Configuration

17.3.12 Point

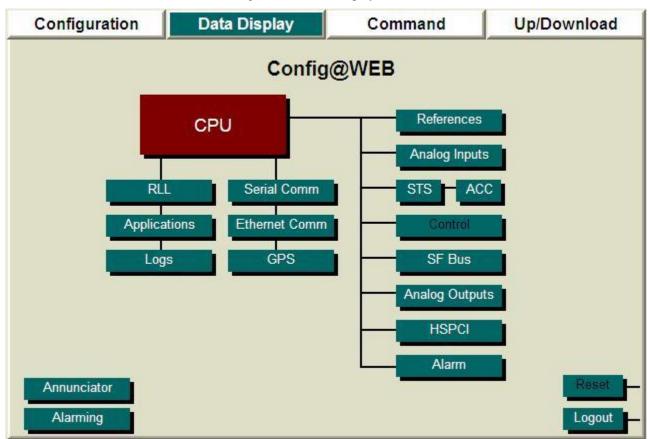
Protocol logical point number. This number cannot be changed.

17.3.13 Name

Enter the name of the point (or accept the default name).

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click Next>> to go to the next 16 points, if applicable. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click the Cancel button to discard changes and return to the IED


Configuration screen. Click the Submit button to accept the changes and return to the IED Configuration screen.

Please note: No configuration changes take effect until the RTU is reset.

17.4 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 17-6 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 17-7	Display Com	nunication Port Da	ata
11501017 7	Disping Comm	numention r ort D	aca

Display Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Comm Counters	Display Port Data
Port #1	K	K	Port 1	DNPR	View	Port Data
Port #2	К	K	Port 2	JEM2 ASCII	View	Port Data
Port#3	К	K	Port 3	None	View	Port Data
Port #4	К	К	Port 4	None	View	Port Data
Port#5	К	К	Port 5	None	View	Port Data
Port#6	К	К	Port 6	None	View	Port Data
Port #7	К	К	Port 7	None	View	Port Data
Port #8	К	К	Port 8	None	View	Port Data
Port #9	К	К	Port 9	None	View	Port Data
Port #10	К	К	Port 10	None	View	Port Data
Port #11	К	К	Port 11	None	View	Port Data
Port #12	К	К	Port 12	None	View	Port Data
Communicat	tion Ass	ociation	S Config			Back

17.4.1 Port Number

Physical Port number of the RTU.

17.4.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

17.4.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

17.4.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

17.4.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

17.4.3 Name

The port name given during configuration or default name accepted.

17.4.4 Protocol

The configured protocol for this port.

17.4.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

17.4.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

17.4.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

17.4.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

JE	M2 ASCII Communication Counte	ers Display
Port # : 4		Port Name : Port 4
Point	Counter Name	Counts
1	Messages Sent	694
2	Good Replies	0
3	Bad/No Replies	346
4	RX Timeouts	346
5	Security Errors	0
6	Interbyte Timer Errors	0
7	Overrun Errors	478
8	Framing Errors Parity Errors	0 632
Data Trap	Configure	
IED Comr	n Counters View mm Counters Reset	
		Back

Figure 17-8 JEM2 ASCII Communication Counters Display

17.4.9 Point Number

A logical point number for reference only.

17.4.10 Counter Name

The following counters are monitored:

17.4.10.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

17.4.10.2 Good Replies

This indicates the cumulative number of good replies since the last reset or power-up.

429

17.4.10.3 Bad/No Replies

This indicates the cumulative number of transmitted messages that did not receive a response, or were incorrect, since the last reset or power-up. This count can be affected by the Rx timeout delay value.

17.4.10.4 RX Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

17.4.10.5 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

17.4.10.6 Interbyte Timer Errors

This indicates the cumulative number of Interbyte timer errors since the last reset or power-up. This count can be affected by the setting of the Interbyte Time in configuration.

17.4.10.7 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

17.4.10.8 Framing Errors

This indicates the cumulative number of framing errors since the last reset or power-up. This can be affected by parity.

17.4.10.9 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

17.4.11 Counts

The counts for each type of Counter.

17.4.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

17.4.13 IED Comm Counters

Click this button to see individual comm. counters for each IED as shown below.

	JEM2 ASCII IED Comm Counters Display								
Port #:4	Port # : 4 Port Name : Port 4								
IED #	IED Name	Messages Sent	Valid Replies	No Replys	Timeouts	Security Errors	Framing Errors	Overrun Errors	Parity Errors
1	JEM2A_IED_1	4	0	3	3	0	0	0	0
2	JEM2A_IED_2	3	0	3	3	0	0	0	0
									Done

17.4.13.1 IED

The number of the IED

17.4.13.2 IED Name

The name of the IED

17.4.13.3 Messages Sent

Messages sent to this IED since the last reset or since the last time the counters were cleared.

430

17.4.13.4 Valid Replies

Valid messages received from this IED since the last reset or since the last time the counters were cleared.

17.4.13.5 No Replies

The number of no replies from this IED since the last reset or since the last time the counters were cleared.

17.4.13.6 Timeouts

This indicates the cumulative number of times that no response was received since the last reset or power-up. This count can be affected by the setting of the Rx Timeout in configuration.

17.4.13.7 Security Errors

This indicates the cumulative number of security errors since the last reset or power-up.

17.4.13.8 Framing Errors

This indicates the cumulative number of framing errors since the last reset or power-up. This can be affected by parity.

17.4.13.9 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

17.4.13.10 Parity Errors

This indicates the cumulative number of parity errors since the last reset or power-up.

17.4.14 Reset Comm Counters

Click this button to reset all comm. counters.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

17.4.15 IED Displays

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

		ay	IED Displa	JEM2 ASCII	
	ne : Port 3	Port Nan			Port # : 3
	Slave Data	On Scan	IED Address	IED Name	IED #
	View	Y	1	JEM2A_IED_1	1
DE#1 X	Back	•			
Accumulators					
Comm Status					

Figure 17-9 JEM2 ASCII IED Display

17.4.16 IED

The logical number of the IED on this communication channel.

17.4.17 IED Name

The name that was chosen, or accepted as default, during configuration.

17.4.18 IED Address

The IED Address chosen during configuration.

17.4.19 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

17.5 Slave Data

Click View to bring up a popup that gives you the choice of viewing Accumulators or Comm Status.

17.5.1 Accumulators

The accumulator counts are displayed as shown below.

Figure 17-10	JEM2 ASCII	Accumulator Display
--------------	------------	---------------------

	JEM2 ASCII Accum	ulator Inputs Disp	lay	
Port # : 2 ED # : 1			IED Na	Port Name : Port 3 me : JEM2A_IED_
	Page1 of 2	Go To Go		Next>
Point	Point Name		Point Status	Count
1	WORKING_REG_0		F	(
2	WORKING_REG_1		F	(
1 2 3 4	WORKING_REG_2		F	(
4	WORKING_REG_3		F	
5	WORKING_REG_4		F	
6	WORKING_REG_5		F	(
7	WORKING_REG_6		F	
8	WORKING_REG_7		F	
9	WORKING_REG_8		F	
10	WORKING_REG_9		F	
11	STORAGE_REG_10)	F	
12	STORAGE_REG_11		F	
13	STORAGE_REG_12	2	F	
14	STORAGE_REG_13	}	F	
15	STORAGE_REG_14	ł	F	
16	STORAGE_REG_15		F	

17.5.1.1 Point

The logical point number.

17.5.1.2 Point Name

The name that was chosen, or accepted as default, during configuration.

17.5.1.3 Point Status

Please see the Config@WEB Secure Software Users Guide.

17.5.1.4 Count

The accumulated count of the point.

Figure 17-11 JEM2 ASCII Comm Status Display

	JEM2 ASCII Status Inputs Display								
Port # : 4 IED # : 1			Port Name : P Name : JEM2A_I						
	Page1 of 1 Go	To Go							
Point	Point Name	Point Status	Point State	•					
0	COMM_STS		Open	•					
			Ba	ck)					

17.5.2 Comm Status

17.5.2.1 Point

The logical number of the point.

17.5.2.2 Point Name

The point name. The only Digital Input point available is the COMM_STS.

17.5.2.3 Point Status

Please see the Config@WEB Secure Software Users Guide.

17.5.2.4 Point State

Indicates that point is either OPEN or CLOSED.

17.5.2.5 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Note: A CLOSED (red) point indicates that the comm. channel is failed. An OPEN (green) point indicates that the comm. channel is operational.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

18 Tickle

18.1 Serial Comm Port Configuration

Tickle Task is not a protocol in the usual sense; it is simply a mechanism to toggle the RTS pin of the chosen port for use by an external alarm or watch dog timer. Additionally, RTS toggling is controlled (enabled or disabled) by any mapped status point.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. From this screen, click Tickle Task from the Protocol drop-down menu as shown.

Communication Port Configuration								
Port Number RTS DTR Configure IRQs	Name	Protocol	Configure Protocol	Point Operations	Copy to Port			
Port #1 K 💌 K 💌	<u>Port 1</u>	DNPR	Port 01	Map Points	Сору			
Port #2 K • K • IRQ6	Port 2	Tickle	Port 02	Map Points	Сору			
Port #3 K V K V	Port 3	None - RTU-IED -	Port 03	-	Сору			
Port #4 K 💌 K 💌	<u>Port 4</u>	2179 Arbiter	Port 04	-	Сору			
Port #5 K 💌 K 💌	Port 5	C2020(M)	Port 05	-	Сору			
Port #6 K V K V IRQ6 V	Port 6	C2100H(M) DNPM	Port 06	-	Сору			
Port #7 K V K V	Port 7	Electran ETI	Port 07	-	Сору			
Port #8 K 💌 K 💌	Port 8	Harris (M)	Port 08	-	Сору			
Port #9 K 💌 K 💌	Port 9	JEM2 ASCII	Port 09	-	Сору			
Port #10 K V K V IRQ6 V	<u>Port 10</u>	Modbus(M) Quantum	Port 10	•	Сору			
Port #11 K • K •	<u>Port 11</u>	SEL Series V(M)	Port 11	•	Сору			
Port #12 K 💌 K 💌	<u>Port 12</u>	Symax Tickle	Port 12	-	Сору			
Communication Associations Conf	ig	Transdata			Back			
		Tunnel - MTU-RTU -						
		8979						
		C2100H CDCI						
		CDC II						
		DNPR						
		FM Horris (D)						
		Harris (R) IDLC						
		L&N -						
18.1.1 Port Nu								

Figure 18-1 Tickle Task Communication Port Configuration

Physical Port number of the RTU.

18.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

18.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

Note: The port on which you assign the Tickle Task must be keyed (K) for the Tickle Task to work.

18.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

18.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

18.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name								
Name Port 1								
Cancel Submit								

18.1.4 Protocol

From the drop-down list, select the protocol for this port.

18.1.5 Configure Protocol

Click the button under Configure Protocol to set up operational parameters for the Tickle Task.

18.1.6 Point Operations

Click this button to assign which status points will be used to enable/disable the toggling of the RTS signal.

18.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

18.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

S2200-AAA-00004

18.2 **Configure Protocol, Serial Comm**

Under the heading Configure Protocol, click Port *n* to configure the Tickle Task port. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Figure 18-2	Tickle Task	Communication	Channel	Configuration
-------------	-------------	---------------	---------	---------------

TICKLE CHANNEL SETUP							
Port # : 1 Port Name : Port 1							
Health Lamp Off Time		400	(ms)				
Health Lamp On Time		100	(ms)				
Cancel Submit							

18.2.1 Health Lamp Off Time (ms)

Enter the time (in milliseconds) for the RTS to be low (off). The default setting is 400.

18.2.2 Health Lamp On Time (ms)

Enter the time (in milliseconds) for the RTS to be High (on). The default setting is 100.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

18.3 **Point Operations**

From the Serial Comm Communication Port Configuration screen, click the Map Points button under Point Operations. A screen similar to Figure 2-5 will appear. Select a staus point from any source. This status point will enable toggling of the RTS line if the point is closed, or disable the toggling of the RTS line if the point is open.

Tickle Point Mapping Port # : 1 Port Name : Port 1							
Point	Device Name	Point Name		Source Points			
1	Hardware DI	DI_PNT_1		Hardware DI 🛛 💌			
			1	Search SPARE Select All points DI_PNT_1 DI_PNT_2 DI_PNT_3 DI_PNT_4 DI_PNT_5			
			X	DI_PNT_6 DI_PNT_7 DI_PNT_8 DI_PNT_9 DI_PNT_10 DI_PNT_11 DI_PNT_12 DI_PNT_13 DI_PNT_14 DI_PNT_15 DI_PNT_16			
				Cancel Submit			

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click Submit button to save changes.

18.4 Data Display

There is no Data Display. You may confirm operation by observing the RTS light for the port in question.

19 L&N C2020(M)

Serial Comm Port Configuration

is a protocol that communicates between the RTU and an IED. It can be used to front-end an existing RTU in order to add new communication functionality within the substation while preserving the existing hardware I/O.

The protocol running on an RTU can also be used at the master station as a front-end processor scanning multiple RTUs and converting the data to a different protocol.

From the Configuration screen, click Serial Comm. You will get a screen similar to Figure 2-1. See Chapter 1 for a complete explanation of the Communication Port Configuration screen. From this screen, click from the Protocol drop-down menu as shown.

		n Port Configura			
Port Number RTS DTR Configure IRQs	Name	Protocol	Configure Protocol	Point Operations	Copy to Port
Port #1 K 💌 K 💌	<u>Port 1</u>	DNPR -	Port 01	Map Points	Сору
Port #2 K V K V	Port 2	C2020(M)	Port 02	Configure	Сору
Port #3 K • K • IRQ6	Port 3	None	Port 03	•	Сору
Port #4 K 💌 K 💌	Port 4	2179 Arbiter	Port 04	•	Сору
Port #5 K 💌 K 💌	Port 5	C2020(M)	Port 05		Сору
Port #6 K V K V	Port 6	C2100H(M) DNPM	Port 06	-	Сору
Port #7 K • K •	<u>Port 7</u>	Electran ETI	Port 07	-	Сору
Port #8 K 💌 K 💌	Port 8	Harris (M)	Port 08	-	Сору
Port #9 K 💌 K 💌	Port 9	Incom JEM2 ASCII	Port 09	-	Сору
Port #10 K V K V	<u>Port 10</u>	Modbus(M) Quantum	Port 10	-	Сору
Port #11 K • K •	<u>Port 11</u>	SEL Series V(M)	Port 11	-	Сору
Port #12 K 💌 K 💌	Port 12	Symax	Port 12	-	Сору
Communication Associations Confi	g	Tickle Transdata			Back
		Tunnel - MTU-RTU - 8979 C2100H CDC I CDC I DNPR FM Harris (R) IDLC L&N			

Figure 19-1 Communication Port Configuration

Communication Port Configuration

19.1.1 Port Number

Physical Port number of the RTU.

19.1.2 RTS and DTR

Request To Send and Data Terminal Ready. Using the drop-down list, set to K, H, or L.

Note: This example applies to the SAGE 2300. Refer to the hardware manual for your particular RTU for variations.

19.1.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

19.1.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

19.1.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

19.1.3 Name

Click on the "blue" name (see below) and rename the port, or accept the default name.

Edit Port Name							
Name Port 1							
	Cancel	Submit					

19.1.4 Protocol

From the drop-down list, select the protocol for this port.

19.1.5 Configure Protocol

Click the button under Configure Protocol to set up communication parameters for this port.

19.1.6 Point Operations

Click this button to assign points.

19.1.7 Copy to Port

This function copies everything in the port configuration except the port name to the target port. Enter a port number to copy to, then click the Copy button.

19.1.8 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

19.2 **Configure Protocol, Serial Comm**

Under the heading Configure Protocol, click Port *n*. You may accept all defaults or fill in the form according to the information following Figure 2-2.

Port # : 2	Port Name : Port 2
Number of IEDs	2
Baud Rate *	1200 💌
Parity *	None 💌
CTS Delay *	25 (ms)
Rx Timeout *	2000 (ms)
Tx Timeout	5000 (ms)
B4 Time *	10 (ms)
Modem Turn Off Time *	0 (ms)
Hardware CTS	• No O Yes
Hardware DCD	● No ○ Yes
Select Timeout	10 (sec)
Idle Time	10 (ms)
Retries	3
	Cancel Submit

Figure 19-2 Communication Channel Configuration

Note 1: All communication parameters with an asterisk * beside their names can be changed on the fly. That is, the change will take effect after Submit without having to reset.

Note 2: The default value and range of acceptable entries for a field where your cursor is placed is shown at the bottom-left of your screen. The example shown is for Number of IEDs.

19.2.1 Number of IEDs (0-15)

Enter the number of IEDs on the port. The default setting is 0.

19.2.2 Baud Rate (300 – 19200)

Select the communications speed for the associated channel. Default setting is 1200.

19.2.3 Parity (None, Odd, Even)

From the drop-down menu, select the parity for the associated channel. The default setting is None.

19.2.4 CTS Delay (0 – 1000ms)

Enter the Clear-To-Send (CTS) Delay in milliseconds for the associated channel. This is the delay of time the channel will wait to start transmitting following Request-To-Send being asserted. The default setting is 25.

19.2.5 Rx Timeout (0 – 30,000ms)

Enter the receive timeout for the associated channel. The receive timeout is the length of time the channel will wait for valid communications prior to declaring the channel in communications error and resetting the channel. Default setting is 2000 (2 seconds).

19.2.6 Tx Timeout (0 – 30,000ms)

Enter the transmit timeout for the associated channel. This value limits the maximum transmission time from the RTU to the master. Default setting is 5000 (5 seconds).

19.2.7 B4 Time (0 – 250ms)

Enter the B4 time for the associated channel. The B4 time is the length of quiet time required on the channel following a transmission from the RTU prior to turning on the RTUs receive interrupts. Default setting is 10.

19.2.8 Modem Turn Off Time (0 – 250ms)

Enter the time delay after the last transmitted byte before turning off the modem. Default setting is 0.

19.2.9 Hardware CTS (No, Yes)

If the hardware Clear-To-Send option is selected for a channel, then reply data bytes will not be transmitted unless the CTS signal is detected by the communications controller chip. This signal is examined after the user programmed CTS delay time has timed out. At the point where the RTU starts its CTS timer, the RTS signal is asserted to the modem. The CTS signal is asserted by the modem to the RTU after the programmed CTS delay. Configuring a CTS delay in the RTU along with the hardware CTS will insure a minimum CTS delay of the configured time. Default setting is No.

19.2.10 Hardware DCD (No, Yes)

If the hardware data carrier detect option is selected for a channel, then the channel communications driver will accept requested message data frames only if carrier is detected by the modem. If carrier is not detected, the data frames are discarded. Default setting is No.

19.2.11 Select Timeout (1 – 25 sec)

Enter the time in seconds that an SBO Select will be armed. Default is 10.

19.2.12 Idle Time (1 – 25,000 ms)

Enter the number of milliseconds to delay between polling messages to IEDs. Default is 1000.

19.2.13 Retries (1-25)

Enter the number of retries on poll messages before marking the data from that IED as failed. Default is 3.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Point Operations

From the Serial Comm Communication Port Configuration screen, click the Configure button under Point Operations. A screen similar to Figure 2-5 will appear. Click on the default IED Name to set up basic information about the IED as shown below.

Figure 19-3	IED Configuration
-------------	-------------------

L&N C2020(M) IED Configuration								
Port # 1						Po	rt Nam	ne : Port 1
IED #	IED Na	ame	IED Address	On Scan	Grp to Scan on SBO	Slave Config		copy IEDn
1	C2020M_	_IED_1 5	1	Y	Disabled	Edit		Сору
2	C2020M	IED #1 Config	uration				x	Сору
		IED Name			C2020M_IED_	1		Back
		IED Address			1			
		On Scan *			• Yes C No			
		Group to Scar	n after SBO	1	Disabled	-		
				Set	:			

19.3.1 IED

The logical number of the IED on this communication channel.

19.3.2 IED Name

Click on the IED Name. A pop-up window called IED Configuration will appear, as shown above.

19.3.2.1 IED Name

The name of the IED. Type in a name, or accept the default.

19.3.2.2 IED Address

The address of the IED. Type in an address, or accept the default. Range is 1 - 15.

19.3.2.3 On Scan

Determines whether or not the IED is being scanned. Click No to disable the scan, or accept the default (Yes).

19.3.2.4 Group to Scan after SBO

Sets the group to scan after a control is performed. Default is Disabled.

19.3.2.5 Set / X

Click the Set button to keep your changes. Click the X at the top right of this dialog box to discard changes.

19.3.3 IED Address

Reflects the entry in the pop-up menu. See above.

19.3.4 On Scan

Reflects the entry in the pop-up menu. See above.

19.3.5 Group to Scan after SBO

Reflects the entry in the pop-up menu. See above.

19.3.6 Slave Config

Click the Edit button to edit the IED points.

19.3.7 Copy to IEDn

To copy the entire IED configuration to another IED, enter the number of the target IED and click Copy.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the Communication Port Configuration screen. Click Edit to Edit the Slave Configuration

19.4 Slave Configuration Edit

19.4.1 Slave Config

Click Edit to continue. A screen similar to Figure 2-10 will appear.

Figure	19-4	IED	Configuration
--------	------	-----	---------------

Port # : 1 IED # : 1		L&N C2020N	Group 1	on	Port Name IED C2020M	NAME :
	Configur	e Sections		Туре		Edit
Section 1A		Section 9A	None 💌	Analog Inputs		Edit
Section 1B	STS 💌	Section 9B	0	Status Inputs		Edit
Section 2A	None ANA	Section 10A	23	Accumulators		Edit
Section 2B	STS	Section 10B	4	Raise/Lower	No 💌	Edit
Section 3A	ACC12	Section 11A	5	Analog Outputs		Edit
Section 3B	STS 💌	Section 11B	7	SBO	No 🔻	Edit
Section 4A	STS 💌	Section 12A	8			
Section 4B	None ANA	Section 12B	10 (A) 11 (B)			
Section 5A	STS	Section 13A	12 (C)			
Section 5B	ACC12 ACC24	Section 13B	13 (D) 14 (E)	Scan	Settings	
Section 6A	STS 💌	Section 14A	15 (F) None 💌	Scan Interval	20000	
Section 6B	STS 💌	Section 14B	None 💌	[ms]	8	-
Section 7A	STS 💌	Section 15A	None 💌	ritonty	0	<u> </u>
Section 7B	STS 💌	Section 15B	None 💌			
Section 8A	STS 💌	Section 16A	None 💌			
Section 8B	None 💌	Section 16B	None 💌			
					Cancel	Submi

S2200-AAA-00004

19.4.2 Group

19.4.2.1 Group

Select Status Select 0 through 15 to edit what types of points are to be included in the response message for the corresponding group.

19.4.3 Configure Sections

19.4.3.1 ANA

Analog Inputs, 12-bit. Uses one section. See Analog Inputs MAP function.

19.4.3.2 STS

Status Inputs, 1-bit or 2-bit. Up to twelve status points will fit in one section. See Status Inputs MAP function.

19.4.3.3 ACC12

One section is an accumulator. It uses all 12 bits of the section for a maximum value of 4095.

19.4.3.4 ACC24

Block is an accumulator (2 sections). This is valid only in the 1st data block as required by the protocol. It uses both the 1st and 2nd data blocks to return a 24 bit value in binary format. The 1st data block contains the most significant 12 bits and the 2nd data block contains the least significant 12 bits.

19.4.4 Type

The different types of I/O points supported by this protocol.

19.4.5 Edit

Click the Edit button to configure the point types for this group.

19.4.6 Scan Settings

The different types of I/O points supported by this protocol.

19.4.6.1 Scan Interval [ms]

The time in milliseconds between scans of this group.

19.4.6.2 Priority

Selects the priority of the group. Zero is the highest priority and will preempt the scans of all lower priority scan groups when the Scan Interval expires.

Please note: No configuration changes take effect until the RTU is reset.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen.

19.5 **IED Analog Configuration**

From the IED Configuration screen, click on Edit for Analog Inputs. A screen similar to Figure 2-13 will appear.

Figura	10.5	Analog	Innut	Configu	ration
riguic	19-5	Analog	mput	Configu	ration

		: # 1 Name : C2020M_IED_1	figuration	P	ort Name : Port Group :	-	
Sect	Point		Name	Counts Min	Counts Max	EGU Min	EGU Max
1 B	1	C2020_ANA_G9_SEC1	Click on Header to	2048	2047	-2048	2047
2 A	1	C2020_ANA_G9_SEC2	Change All	-2048	2047	-2048	2047
2 B	1	C2020_ANA_G9_SEC3		-2048	2047	-2048	2047
3 A	1	C2020_ANA_G9_SEC4	Value <u>Set</u>	2048	2047	-2048	2047
3 B	1	C2020_ANA_G9_SEC5	and/or change		2047	-2048	2047
4 A	1	C2020_ANA_G9_SEC6		-2048	2047	-2048	2047
						C	ancel Submit

19.5.1 Sect

Protocol logical section number. This number cannot be changed.

19.5.2 Point

Protocol logical point number. This number cannot be changed.

19.5.3 Name

Enter the name of the point (or accept the default name).

19.5.4 Counts Min

Enter a minimum counts value for the point. All entries in this column may be changed at once by clicking on the header. The maximum range is -2047 thru 2047

19.5.5 Counts Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header. The maximum range is -2047 thru 2047

19.5.6 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

19.5.7 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<<Pre>Prev to navigate to the previous 16 points, if applicable.

Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

19.6 **IED Status Configuration**

From the IED Configuration screen, click on Edit for Status. A screen similar to Figure 2-14 will appear.

Figure 19-6 Status Input Configuration

C2020 Status Input Configuration

Port # 1	
IED Name : C2020M_IED	1

		Page 1 of 10 GoTo Go	Next >>
Sec	Point	Name	MCD
1 B	1	C2020_STS_G2_SEC1_1	O Yes 🖲 No
1 B	2	C2020_STS_G2_SEC1_2	O Yes 🖲 No
1 B	3	C2020_STS_G2_SEC1_3	O Yes 🖲 No
1 B	4	C2020_STS_G2_SEC1_4	O Yes 🖲 No
1 B	5	C2020_STS_G2_SEC1_5	C Yes 🖲 No
1 B	6	C2020_STS_G2_SEC1_6	O Yes 🖲 No
1 B	7	C2020_STS_G2_SEC1_7	O Yes 🖲 No
1 B	8	C2020_STS_G2_SEC1_8	O Yes 🖲 No
1 B	9	C2020_STS_G2_SEC1_9	C Yes 🖲 No
1 B	10	C2020_STS_G2_SEC1_10	C Yes 🖲 No
1 B	11	C2020_STS_G2_SEC1_11	C Yes @ No
1 B	12	C2020_STS_G2_SEC1_12	

19.6.1 Sec

Protocol logical section number. This number cannot be changed.

19.6.2 Point

Protocol logical point number. This number cannot be changed.

19.6.3 Name

Enter the name of the point (except for COMM_STS which can not be changed) or accept the default name.

19.6.4 MCD

Sets this point and the next point as a 2-bit Momentary Change Detect point.

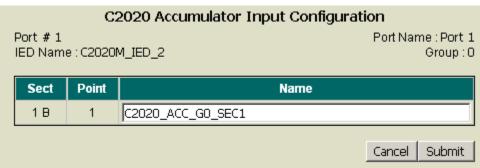
Port Name : Port 1

Group : 2

The RTU IED database may then be configured to cause the RTU to scan the IED status points to acquire the change bits from the IED. The following parameters apply to the 2 bit status change data acquisition: Table 4-1

RTU Current State	2020 Current State	2020 Change Bit	RTU Events Queued
1	1	0	none
0	0	0	none
1	0	0	change to 0
0	1	0	change to 1
1	1	1	change to 0, change to 1
0	0	1	change to 1, change to 0
1	0	1	change to 0, change to 1, change to 0
0	1	1	change to 1, change to 0, change to 1

Table 19-1	Two Bit Status
------------	----------------


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

19.7 IED Accumulators Configuration

From the IED Configuration screen, click on Edit for Accumulator Inputs. A screen similar to Figure 2-15 will appear.

Figure 19-7 Accumulators Configuration

19.7.1 Sect

Protocol logical section number. This number cannot be changed.

19.7.2 Point

Protocol logical point number. This number cannot be changed.

19.7.3 Name

Enter the name of the point or accept the default name.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

Please note: No configuration changes take effect until the RTU is reset.

19.8 **IED Raise/Lower Configuration**

Click on Edit for Raise/Lower. A screen similar to Figure 2-17 will appear.

Figure 19-8 Digital Outputs Configuration

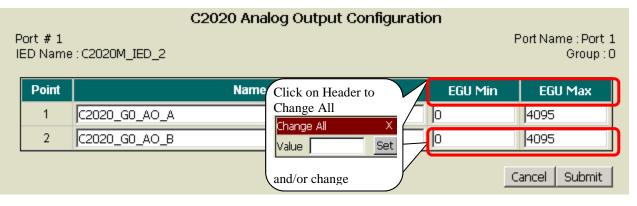
	C2020 Raise/Lower Input Configu	ration	
Port # 1		Port Nar	me : Port 1
IED Name	e : C2020M_IED_2		Group : O
Seq	Name		
1 - R	C2020_G0_1 - R		
1 - L	C2020_G0_1 - L		
2 - R	C2020_G0_2 - R		
2-L	C2020_G0_2 - L		
3-R	C2020_G0_3 - R		
3-L	C2020_G0_3 - L		
		Cancel	Submit

19.8.1 Seq

Protocol logical sequence number. This number cannot be changed

19.8.2 Name

Enter the name of the point (or accept the default name)


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

19.9 IED Analog Outputs Configuration

Click on Edit for Analog Outputs. A screen similar to the one below will appear.

Figure 19-9 Analog Outputs Configuration

19.9.1 Point

Protocol logical point number. This number cannot be changed

19.9.2 Name

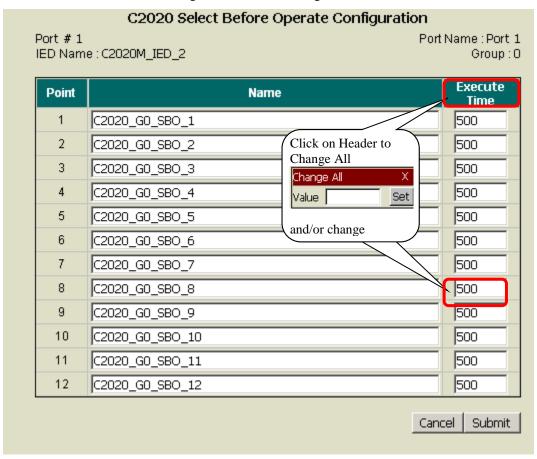
Enter the name of the point (or accept the default name)

19.9.3 EGU Min

Enter a minimum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.

19.9.4 EGU Max

Enter a maximum engineering unit value for the point. All entries in this column may be changed at once by clicking on the header.


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

19.10 IED SBO Configuration

Click on Edit for SBO. A screen similar to the one below will appear.

Figure 19-10 SBO Configuration

19.10.1 Point

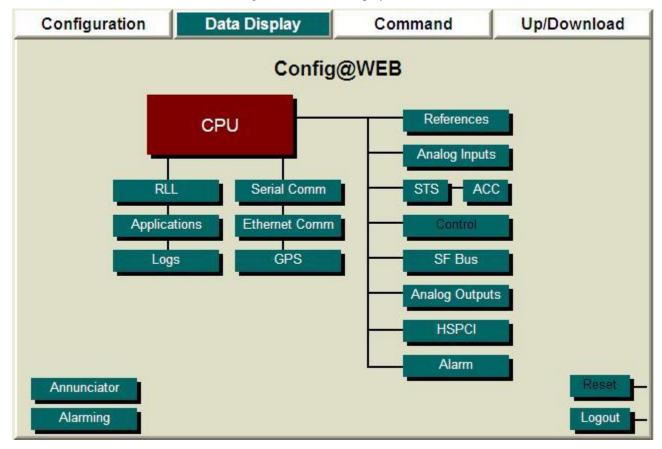
Protocol logical point number. This number cannot be changed

19.10.2 Name

Enter the name of the point (or accept the default name)

19.10.3 Execute Time

Enter the Execute Time (or accept the default)


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the IED Configuration screen. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Cancel button to discard changes. Click the Submit button to accept the changes.

19.11 Data Display

Click the Data Display tab as shown in Figure 2-18.

Figure 19-11 Data Display Screen

Click Serial Comm to get the screen shown in Figure 2-19.

Figure 19-12	Display C	ommunication	Port Data
--------------	-----------	--------------	-----------

RTS	DTD				
	DTR	Name	Protocol	Comm Counters	Display Port Data
К	К	Port 1	DNPR	View	Port Data
К	К	Port 2	C2020(M)	View	Port Data
К	К	Port 3	None	View	Port Data
К	К	Port 4	None	View	Port Data
К	К	Port 5	None	View	Port Data
К	К	Port 6	None	View	Port Data
К	К	Port 7	None	View	Port Data
К	К	Port 8	None	View	Port Data
К	К	Port 9	None	View	Port Data
К	К	Port 10	None	View	Port Data
К	К	Port 11	None	View	Port Data
К	К	Port 12	None	View	Port Data
	К К К К К К К К К К	K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K	K K Port 2 K K Port 3 K K Port 4 K K Port 5 K K Port 6 K K Port 7 K K Port 8 K K Port 9 K K Port 10 K K Port 11	KKPort 2C2020(M)KKPort 3NoneKKPort 4NoneKKPort 5NoneKKPort 6NoneKKPort 7NoneKKPort 8NoneKKPort 9NoneKKPort 10NoneKKPort 11None	KKPort 2C2020(M)ViewKKPort 3NoneViewKKPort 4NoneViewKKPort 5NoneViewKKPort 6NoneViewKKPort 7NoneViewKKPort 8NoneViewKKPort 9NoneViewKKPort 10NoneViewKKPort 11NoneView

Display Communication Port Data

19.11.1 Port Number

Physical Port number of the RTU.

19.11.2 RTS and DTR

Request To Send and Data Terminal Ready. Selected during configuration, this value can be K, H, or L.

19.11.2.1 "K" represents Keyed (Radio/Modem).

The RTU firmware asserts/deasserts the signal according to the protocol timing configuration. Typically used as a Radio/Modem key output (Default Setting).

19.11.2.2 "H" represents Positive RS232 Voltage.

When the RTU firmware is active, the output will be driven to the positive RS232 voltage except when the Z85230 (Communications Controller chip) channel driving the output is being reset. While the reset is occurring, the output will drop to the negative RS232 voltage. When the reset is complete, the output will rise to the Positive RS232 Voltage. This setting can be used to power RS232 to RS485 converters, RS232 to Fiber Optic converters, or any other device requiring the Positive RS232 Voltage.

19.11.2.3 "L" represents Negative RS232 Voltage.

The output will be driven to the negative RS232 voltage at powerup and always be the negative RS232 voltage.

19.11.3 Name

The port name given during configuration or default name accepted.

19.11.4 Protocol

The configured protocol for this port.

19.11.5 Comm Counters

Click the View button under Comm Counters to display a set of Communication Counters for this port.

19.11.6 Display Port Data

Click the Port Data button under Display Port Data to display an IED listing to select the data to be displayed.

19.11.7 Communication Associations

Please see the DNPR chapter of the Config@WEB MTU to RTU Protocols Manual.

Navigation

Click the Back button to return to the previous screen.

19.11.8 Communication Counters

Under Comm Counters, click View to get the screen shown in Figure 2-20.

C	2020(M) Communication Counte	rs Display
Port # : 1		Port Name : Port 1
Point	Counter Name	Counts
1	Messages Received	6511
2	Messages Sent	6526
3	B4 Timer Violations	0
4	BCH Security Errors	0
5	Overrun Errors	0
6	Framing Errors	0
7	Hardware DCD Errors	0
8	Hardware CTS Errors	0
	Configure	
Data Trap		Back

Figure 19-13	Communication	Counters Display
--------------	---------------	------------------

19.11.9 Point

A logical point number for reference only.

19.11.10 Counter Name

The following counters are monitored:

19.11.10.1 Messages Sent

This indicates the cumulative number of transmitted messages since the last reset or power-up.

19.11.10.2 Messages Received

This indicates the cumulative number of received messages since the last reset or power-up.

19.11.10.3 B4 Timer Violations

This indicates the cumulative number of B4 Timer violations. This count can be affected by the setting of the B4 Time in configuration.

19.11.10.4 BCH Security Errors

This indicates the cumulative number of BCH security errors since the last reset or power-up.

19.11.10.5 Overrun Errors

This indicates the cumulative number of overrun errors since the last reset or power-up.

19.11.10.6 Framing Errors

This indicates the cumulative number of received bytes with framing errors since the last reset or power-up. This can be affected by parity and MTO.

19.11.10.7 Hardware DCD Errors

This indicates the cumulative number of DCD errors since the last reset or power-up.

19.11.10.8 Hardware CTS Errors

This indicates the cumulative number of CTS errors since the last reset or power-up.

19.11.11 Counts

The counts for each type of Counter.

19.11.12 Data Trap

Please see the Config@WEB Secure Software Users Guide.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

19.11.13 Display Port Data

From the Display Communication Port Data Screen, click Port Data to get the screen shown in Figure 2-22.

L&N C2020(M) IED Display										
Port # 1 Port Name : Port										
IED #	IED Name	IED Address	On Scan	Group to Scan on SBO	Slave Data					
1	C2020M_IED_1	1	Y	Disabled	View					
2	C2020M_IED_2	2	Y	1	View					
					Back					

Figure 19-14 IED Display

19.11.14 IED

The logical number of the IED on this communication channel.

19.11.15 IED Name

The name that was chosen, or accepted as default, during configuration.

19.11.16 IED Address

The IED Address chosen during configuration.

19.11.17 On Scan

Y (Yes) means that the IED is on scan. An N (No) means the IED will not be polled.

19.11.18 Slave Data

Click View to examine the data being returned from this device. A screen similar to Figure 2-23 will appear.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. Click the Back button to return to the previous screen.

From the IED Display screen, click View under Slave Data to get the screen shown in Figure 2-23.

C2020(M) IED Display									
Port # : 1 Port Name : Po IED # : 1 IED Name : C2020M_IE									
Туре	Number	View							
Analog Inputs	192	View							
Status Inputs	205	View							
Accumulators	0	View							
Analog Outputs	0	View							
Digital Outputs	0								
SBO Outputs	96								
		Back							

Figure 19-15 IED Display

19.11.19 Type

The type of point.

19.11.20 Number

The number of points from your IED.

19.11.21 View

Click the View button to view points.

Navigation

Port #: *n* tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: *n* tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click the Back button to return to the previous screen.

19.12 Analog Inputs

From the IED Display screen, click View for Analog Inputs to get the screen shown in Figure 2-24.

Figure 19-16 Analog Inputs Display

		C2020(M) Analog Inputs Disp	lay		
Port # : 1 IED # : 1		D			ort Name : Port : : C2020M_IED_:
		Page1 of 12 Go To	GO		Next>
Group	Sect	Point Name	Point Status	Point Value	Point Counts
3	1B	C2020_ANA_G3_SEC1		-2000.000	-2000
3	2A	C2020_ANA_G3_SEC2		-2000.000	-2000
3	2B	C2020_ANA_G3_SEC3		-2000.000	-2000
3	ЗA	C2020_ANA_G3_SEC4		-2000.000	-2000
3	3B	C2020_ANA_G3_SEC5		-2000.000	-2000
3	4A	C2020_ANA_G3_SEC6		-2000.000	-2000
3	4B	C2020_ANA_G3_SEC7		-2000.000	-2000
3	5A	C2020_ANA_G3_SEC8		-2000.000	-2000
3	5B	C2020_ANA_G3_SEC9		-2000.000	-2000
3	6A	C2020_ANA_G3_SEC10		-2000.000	-2000
3	6B	C2020_ANA_G3_SEC11		-2000.000	-2000
3	7A	C2020_ANA_G3_SEC12		-2000.000	-2000
3	7B	C2020_ANA_G3_SEC13		-2000.000	-2000
3	8A	C2020_ANA_G3_SEC14		-2000.000	-2000
3	8B	C2020_ANA_G3_SEC15		-2000.000	-2000
3	9A	C2020_ANA_G3_SEC16		-2000.000	-2000
					Back

19.12.1 Group

Protocol logical Group number.

19.12.2 Sect

Protocol logical section number.

19.12.3 Point

Protocol logical point number.

19.12.4 Point Name

The name of the point assigned during configuration.

19.12.5 Point Status

Please see the Config@WEB Secure Software Users Guide.

19.12.6 Point Value

The engineering unit (EGU) value.

19.12.7 Point Counts

The counts from the IED.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page n of n tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

19.13 Status Inputs

From the IED Display screen, click View for Status Inputs to get the screen shown in Figure 2-25.

	C2020(M) Status Inputs Display						
Port # : 1 IED # : 1					_		
Group	Sect	Point	Point Name	Point Status	Point State	•	
		0	C2020M_COMM_STS		OPEN	•	
1	1B	1	C2020_STS_G1_SEC1_1		OPEN	•	
1	1B	3	C2020_STS_G1_SEC1_3		OPEN	•	
1	1B	5	C2020_STS_G1_SEC1_5		OPEN	•	
1	1B	7	C2020_STS_G1_SEC1_7		OPEN	•	
1	1B	9	C2020_STS_G1_SEC1_9		OPEN	•	
1	1B	11	C2020_STS_G1_SEC1_11		OPEN	•	
1	2A	1	C2020_STS_G1_SEC2_1		OPEN	•	
1	2A	3	C2020_STS_G1_SEC2_3		OPEN	•	
1	2A	5	C2020_STS_G1_SEC2_5		OPEN	•	
1	2A	7	C2020_STS_G1_SEC2_7		OPEN	•	
1	2A	9	C2020_STS_G1_SEC2_9		OPEN	•	
1	2A	11	C2020_STS_G1_SEC2_11		OPEN	•	
1	2B	1	C2020_STS_G1_SEC3_1		OPEN	•	
1	2B	3	C2020_STS_G1_SEC3_3		OPEN	•	
1	2B	5	C2020_STS_G1_SEC3_5		OPEN	•	
					E	Back	

Note: The first point is reserved for Communication Status. COMM_STS indicates whether or not this IED is in good communications. CLOSED indicates a failed comm. channel. OPEN indicates an operational comm. channel.

19.13.1 Group

Protocol logical Group number.

19.13.2 Sect

Protocol logical section number.

19.13.3 Point

Protocol logical point number.

19.13.4 Point Name

The name of the point assigned during configuration.

19.13.5 Point Status

Please see the Config@WEB Secure Software Users Guide.

19.13.6 Point State

Indicates that point is either OPEN or CLOSED.

19.13.7 •

A red dot indicates the point is CLOSED; a green dot indicates the point is OPEN.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

19.14 Accumulator Inputs

From the IED Display screen, click View for Accumulators to get the screen shown in Figure 2-26.

	C2020(M) Accumulator Inputs Display						
Port # : 2 IED # : 1	!		Page1 of 1 Go To Go		Port Name : Port 2 ne : C2020M_IED_1		
Group	Sect	Point	Point Name	Point Status	Count		
0	5B	1	C2020_ACC_G0_5B	F	0		
0	6A	1	C2020_ACC_G0_6A	F	0		
0	7A	1	C2020_ACC24_G0_7A	F	0		
0	8A	1	C2020_ACC24_G0_8A	F	0		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
-	-	-	-		-		
	Back						

Figure 19-18 Counter Inputs Display

19.14.1 Group

Protocol logical Group number:

19.14.2 Sect

Protocol logical section number.

19.14.3 Point

Protocol logical point number.

19.14.4 Point Name

The name of the point assigned during configuration.

19.14.5 Point Status

Please see the Config@WEB Secure Software Users Guide.

19.14.6 Count

The accumulated count.

Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click <<Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

19.15 Analog Outputs

From the IED Display screen, click View for Analog Outputs to get the screen shown below.

Figure 19-19 Analog Outputs Display

C2100H(M) Analog Outputs Display						
Port#:Po IED#:1	ort # : 3			ort Name : Port 3 me : CHM_IED_1		
		Page1 of 2 Go To	Go	Next>>		
Group	Point	Point Name	Point Status	Point Value		
1	0	CHIED_AO_1	F	0.000		
1	1	CHIED_AO_2	F	0.000		
1	2	CHIED_AO_3	F	0.000		
1	3	CHIED_AO_4	F	0.000		
1	4	CHIED_AO_5	F	0.000		
1	5	CHIED_AO_6	F	0.000		
1	6	CHIED_AO_7	F	0.000		
1	7	CHIED_AO_8	F	0.000		
1	8	CHIED_AO_9	F	0.000		
1	9	CHIED_AO_10	F	0.000		
1	10	CHIED_AO_11	F	0.000		
1	11	CHIED_AO_12	F	0.000		
				Back		

19.15.1 Group

Protocol logical Group number:

19.15.2 Point

Protocol logical point number.

19.15.3 Point Name

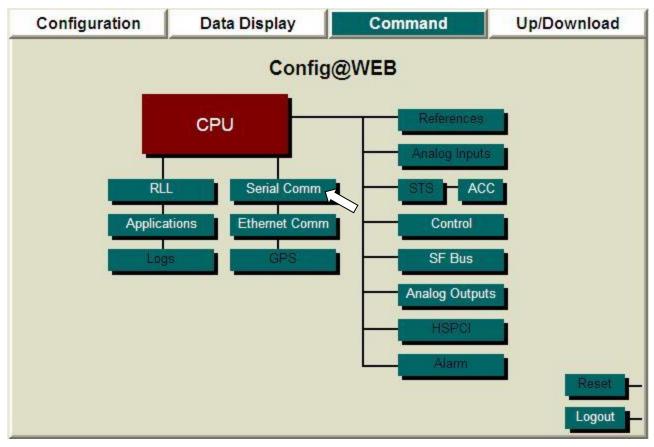
The name of the point assigned during configuration.

19.15.4 Point Status

Please see the Config@WEB Secure Software Users Guide.

19.15.5 Point Value

The engineering unit (EGU) value.


Navigation

Port #: n tells you which port you are on. Port Name : *name* tells you the name of the port. IED #: n tells you which IED you are on. IED Name : *name* tells you the name of the IED. Click << Prev to navigate to the previous 16 points, if applicable. Page *n* of *n* tells you which page (of a total number of pages) you are on. Go to a specific page by typing in the page number, then click the Go button. Click Next>> to go to the next 16 points, if applicable. Click the Back button to return to the previous screen.

19.16 **Command Serial Comm**

Devices on the Serial Comm ports may be commanded, if they are capable of controls. From the main menu page, click the Command tab, then the Serial Comm button as shown in Figure 2-29.

Figure 19-20 Command Tab Page

The resultant screen will be similar to Figure 2-30. Test Mode is explained in the SAGE 2300 manual. Under Command Port Data, click Port Data.

Command Communication Port Data						
Port Number	RTS	DTR	Name	Protocol	Command Port Data	Test Mode
Port #1	К	К	Port 1	C2020(M)	Port Data	Normal 💌
Port#2	К	К	Port 2	None	Port Data	Normal 🔽
Port#3	К	К	Port 3	L&N	Port Data	Normal 💌
Port#4	К	К	Port 4	L&N	Port Data	Normal 💌
Port#5	К	К	Port 5	None	Port Data	Normal 🔽
Port#6	К	К	Port 6	None	Port Data	Normal 🔽
Port#7	К	К	Port 7	None	Port Data	Normal 🔽
Port#8	К	К	Port 8	None	Port Data	Normal 🔽
Port#9	К	К	Port 9	None	Port Data	Normal 🔽
Port#10	К	К	Port 10	None	Port Data	Normal 🔽
Port#11	К	К	Port 11	None	Port Data	Normal 💌
Port#12	К	К	Port 12	None	Port Data	Normal 💌

Figure 19-21 Serial Comm Command Communications Port Data

The resultant screen will be similar to Figure 2-31. Click on the Command button.

Figure 19-22 IED Command

C2020M IED Command									
Port # 1 Port Name : Port 1									
IED #	IED Name	IED Address	On Scan	Slave Data					
1	C2020M_IED_1	1	Y	Command					
2	2 C2020M_IED_2 2 Y Command								
Back									

The resultant screen will be similar to Figure 2-32. If the devices exist on the IED, and if you have them configured as in this example, you will be able to command various outputs.

C2020M IED Command							
Port # : 2 Port Name : Port IED # : 1 IED Name : C2020M_IED_							
Туре	Number	Command					
Analog Inputs	4						
Status Inputs	49						
Accumulators	2						
Analog Outputs	2	Command					
Digital Outputs	6	Command					
SBO Outputs	12	Command					
		Back					

Click on the Analog Outputs Command button. The resulting screen will look like Figure 10-21. Type in a value for the chosen AO channel, then click the Execute button. The output channel will be driven to that value.

Figure 19-24 Analog Outputs Comma

	C2020M Analog Outputs Command					
Port # : 1 Port Name : Port 1 IED # : 1 IED Name : C2020M_IED_1						
			Page 1 of 1	Go To Go		
	Group	Point	Name	Range	Value	Operation
	0	1	C2020_G0_AO_A	0.000 to 4095.000	0.000	Execute
	0	2	C2020_G0_AO_B	0.000 to 4095.000	0.000	Execute
						Back

Click on the Command button for Digital Outputs. The resulting screen will look like the figure below. Type in an execute time, then click the Execute button.

Figure 19-25	Digital Outputs Comman	nd
1.90.0 1/ 20	Billing outputs commu	

C2020 Digital Outputs Command Port # : 1 Port Name : Port 1 IED # : 1 IED Name : C2020M_IED_1 Page 1 of 1 GoTo Go				
Group	Point	Name	Execute Time (ms)	Point Operations
0	1	C2020_G0_1 - R	0	Execute
0	2	C2020_G0_1 - L	0	Execute
0	3	C2020_G0_2 - R	0	Execute
0	4	C2020_G0_2 - L	0	Execute
0	5	C2020_G0_3 - R	0	Execute
0	6	C2020_G0_3 - L	0	Execute
				Back

Click on the Command button. The resulting screen will look like the one below after either a Trip or Close has been selected, then Executed with the Execute button.

rt # : 1 D # : 1				Port Name : Por IED Name : C2020M_IED
		Page 1 of 8	GoTo GO	Next
Group	Point	Name	Execute Time (ms)	Point Operations
8	1	C2020_G8_SBO_1	500	Trip C Close Executi
8	2	C2020_G8_SBO_2	500	O Trip O Close Executi
8	3	C2020_G8_SBO_3	500	O Trip O Close Executi
8	4	C2020_G8_SBO_4	500	O Trip O Close Execut
8	5	C2020_G8_SBO_5	500	O Trip O Close Executi
8	6	C2020_G8_SBO_6	500	O Trip O Close Executi
8	7	C2020_G8_SBO_7	500	O Trip O Close Execut
8	8	C2020_G8_SBO_8	500	O Trip O Close Executi
8	9	C2020_G8_SBO_9	500	O Trip O Close Executi
8	10	C2020_G8_SBO_10	500	O Trip O Close Executi
8	11	C2020_G8_SBO_11	500	O Trip O Close Executi
8	12	C2020_G8_SBO_12	500	O Trip O Close Executi

20 Glossary

A/D	Analog to Digital
AC	Alternating Current
ACI	AC Input
ADC	Analog to Digital Converter
AI	Analog Input, also AIN
ANSI	American National Standards Institute
AO	Analog Output, also AOUT
ARP	Address Resolution Protocol (ARP) is a telecommunications protocol used for resolution of network layer addresses into link layer addresses, a critical function in multiple-access networks. ARP was defined by RFC 826 in 1982. It is Internet Standard STD 37. It is also the name of the program for manipulating these addresses in most operating systems.
ASCI	Asynchronous Serial Communications Interface
ASCII	American Standard Code for Information Interchange
ASIC	Application Specific Integrated Circuit
AWG	American Wire Gauge
baud	Modem speed in Bits Per Second
bps	Bits Per Second
bridge	A network device capable of connecting networks that use similar protocols
С	Celsius or the programming language C
CA	Certificate Authority - an entity that issues digital certificates. The digital certificate certifies the ownership of a public key by the named subject of the certificate.
CEB	Communication Expansion Board
check-back	Hardware/Software method of control output protection
CCITT	Comité Consultatif Internationale de Télégraphique et Téléphonique
CIP	Critical Infrastructure Protection – The CIP Cyber Security Standards maintained by NERC are intended to ensure the protection of the Critical Cyber Assets that control or effect the reliability of North America's bulk electric systems. In 2006, the Federal Energy Regulatory Commission (FERC) approved the Security and Reliability standards

proposed by NERC, making the CIP Cyber Security Standards
mandatory and enforceable across all users, owners and operators of the
bulk-power system.

CMOS	Complementary Metal Oxide Semiconductor	
СОММ	Communication, also COM	
COS	Change of State	
CPU	Central Processing Unit	
CRC	Cyclic Redundancy Check; a method for error checking that detects randomly occurring single and multiple bit errors and is widely accepted for the detection of "burst" errors encountered in communication networks.	
CTS	Clear To Send	
DAC	Digital to Analog Converter	
dBm	Decibels relative to 1mW	
DC	Direct Current	
debounce	Filtering of contact closure noise	
DHCP	Dynamic Host Configuration Protocol – often used to refer to the network server that performs this function	
DI	Digital Input	
DFT	Discreet Fourier Transform	
DMA	Direct Memory Access	
DMM	Digital Multimeter	
DNS	Domain Naming Service – often used to refer to the network server that performs this function	
DO	Digital Output	
DSA	Digital Signature Algorithm - An algorithm for public/private-key cryptography	
DSP	Digital Signal Processor	
DTR	Data Terminal Ready	
DVM	Digital Volt Meter	
EIA	Electronic Industries Association	
EEPROM	Electrically Erasable Programmable Read Only Memory	
EPLD	Electrically Programmable Logic Device	

Config@WEB RTU to IED Protocols

EPROM	Erasable Programmable Read Only Memory		
Ethernet	A broadcast networking technology that can use several different physical media, including twisted pair cable and coaxial cable. TCP/IP is commonly used with Ethernet networks.		
FB	Function Block – an element is the Function Block Diagram graphical language		
FBD	Function Block Diagram graphical language – one of the IEC 61131-3 programming languages		
FC	Flow Chart graphical language – one of the IEC 61131-3 programming languages		
FF	Flip-Flop		
FIFO	First In First Out		
FIP	Fieldbus implementation based on French standard		
firmware	Program held in ROM or Flash memory		
Flash Memory	A type of non-volatile storage device similar to EEPROM		
FMR	Feeder Management Remote		
FMS	Feeder Management System		
form A	Relay contact, single throw, normally open		
form C	Relay contact, double throw		
FRF	Full Range Factor; a method used for analog scaling; $FRF = \frac{\text{Data Value} - \text{Data Min}}{\text{Data Max} - \text{Data Min}}$		
FS	Full Scale		
FTP	File Transfer Protocol – A TCP/IP application used for transferring files from one system to another		
GPS	Global Positioning System		
GUI	Graphical User Interface		
Н	Hexadecimal (base 16), as in XXXXh		
HEX	Hexadecimal (base 16), as in XXXXh		
HDLC	High-level Data Link Control		
HSPCI	High Speed Pulse Counter Input		
НТТР	The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, hypermedia information systems.[1] HTTP is the foundation of data communication for the World Wide Web.		

Chapter 20 - Glossary		Config@WEB RTU to IED Protocols	469
	HTTPS	Hypertext Transfer Protocol Secure (HTTPS) is a widely used communications protocol for secure communication over a computer network, with especially wide deployment on the Internet. Technically is not a protocol in itself; rather, it is the result of simply layering the Hypertext Transfer Protocol (HTTP) on top of the SSL/TLS protocol, thus adding the security capabilities of SSL/TLS to standard HTTP communications.	-
	Hz	Hertz, frequency in cycles per second	
	I/O	Input/Output	
	ID	Identification	
	IEC	International Electro-technical Commission	
	IED	Intelligent Electronic Device	
	IEEE	Institute of Electrical and Electronic Engineers	
	IKE	Internet Key Exchange - the protocol used to set up a security associat (SA) in the IPsec protocol suite	tion
	IL	Instruction List language – one of the IEC 61131-3 programming languages	
	IPsec	Internet Protocol Security is a protocol suite for securing IP communications by authenticating and encrypting each IP packet of a communication session. IPsec also includes protocols for establishing mutual authentication between agents at the beginning of the session a negotiation of cryptographic keys to be used during the session.	3
	ISA	Instrument Society of America	
	ISO	International Standards Organization	
	ISP	Integrated Software Project – Fieldbus implementation using existing IEC standards	
	ITU	Intelligent Terminal Unit	
	JEDEC	Joint Electronic Device Engineering Council	
	k	Kilo - kB is kilobytes, kV is kilovolts, etc.	
	KHz	Kilo Hertz	
	LAN	Local Area Network	
	LCD	Liquid Crystal Display	
	LD	Ladder Diagram graphical language – one of the IEC 61131-3 programming languages	
	LED	Light Emitting Diode	

Config@WEB RTU to IED Protocols

LRC	Longitudinal Redundancy Check; uses both "horizontal" and "vertical" parity bits to detect errors in the messages between the Master and the RTUs. This technique is also known as Geometric Coding.	
LSB	Least Significant Bit	
mA	Milliampere	
MAP	Manufacturing Automation Protocol	
MEB	Memory Expansion Bus (also, Memory Expansion Board)	
MHz	Megahertz	
MMI	Man Machine Interface	
MMS	Manufacturing Message Specification	
MSB	Most Significant Bit	
msec	Millisecond	
MTU	Master Terminal Unit, also Master Station	
MUX	Multiplexer	
NC contact	Normally Closed relay contact	
NEMA	National Electrical Manufacturers Association	
NERC	The North American Electric Reliability Corporation is the electric reliability organization (ERO) certified by the Federal Energy Regulatory Commission to establish and enforce reliability standards for the bulk power system.	
NO contact	Normally Open relay contact	
OpenSSH	A set of computer programs providing encrypted communication sessions over a computer network using the SSH protocol. It was created as an open source alternative to the proprietary Secure Shell software suite offered by SSH Communications Security.	
O/S or OS	Operating System	
OSI	Open Systems Interconnection	
OZ	Ounce	
РС	Power Converter, also Personal Computer	
PCI	Pulse Counter Input	
PF	Power Factor	
PID	Three term controller, proportional, integral, derivative closed-loop control algorithm	
PLD	Programmable Logic Device	

PLC

POU

PPP

RLL

Config@WEB RTU to IED Protocols
Programmable Logic Controller
Program Organization Unit
Point-to-Point Protocol – A TCP/IP protocol that provides host-to-

- Point-to-Point Protocol A TCP/IP protocol that provides host-to-host network and router-to-router connections. Can be used to provide a serial line connection between two machines.
- Pulses Per Second pps
- Public/Private Key Secure data encryption scheme
- PuTTY A free and open source terminal emulator application which can act as a client for the SSH, Telnet, rlogin, and raw TCP computing protocols and as a serial console client.
- **PWR** Power
- RAM Random Access Memory
- Relay Ladder Logic ROM Read Only Memory
- A device that connects LANs into an internetwork and routes traffic between router them
- **RS232C** EIA Serial data communications standard
- RSA An algorithm for public/private-key cryptography.
- RST Reset
- RTOS Real Time Operating System
- RTS Request To Send
- RTU Remote Terminal Unit
- Rx Receive
- Substation Automation Platform SAP
- **SBO** Select Before Operate
- SCC Serial Communications Controller
- **SCADA** Supervisory Control And Data Acquisition
- **SCTO** Soft Carrier Turn Off
- **SDLC** Synchronous Data Link Control
- SEB Surge Protection Expansion Board
- SFB Sequential Function Block - one of the IEC 61131-3 programming languages
 - Special Function Bus

SFB

471

Chapter 20 - Glossary		Config@WEB RTU to IED Protocols	472
	SFC	Sequential Function Chart graphical language	
	SOE	Sequence of Events	
	SSH	Secure Shell - A method to obtain secure data communication using public/private RSA or DSA keys	
	SSL	Secure Socket Layer - The standard security technology for establishing an encrypted link between a web server and a browser; when installed in conjunction with a certificate, displays HTPPS connection; green for valid certificate, red for invalid certificate	
	ST	Structured Text language – one of the IEC 61131-3 programming languages	
	STS	Status	
	SWC	Surge Withstand Capability, IEEE C37.90a 1978	
	TCP/IP	Transmission Control Protocol/Internet Protocol	
	TLS	Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are cryptographic protocols that provide communication security over the Internet. TLS and SSL encrypt the segments of network connections at the Application Layer for the Transport Layer using asymmetric cryptography for key exchange, symmetric encrypt for confidentiality, and message authentication codes for message integrity.	,
	Tx	Transmit	
	UART	Universal Asynchronous Receiver Transmitter	
	UIF	User Interface Function	
	USART	Universal Synchronous Asynchronous Receiver Transmitter	
	msec	Microsecond	
	UVPROM	Ultraviolet erasable Programmable Read Only Memory	
	VAC	Volts Alternating Current	
	VAR	Volt-Amperes Reactive	
	VARH	VAR Hours	
	VDC	Volts Direct Current	
	VxWorks	Real Time Operating System made by Wind River for embedded computer systems	
	W	Watt	
	Watchdog Timer	Circuit that resets CPU if it fails to execute program	
	WH	Watt Hours	

Chapter 20 - Glossary	Config@WEB RTU to IED Protocols	473
XB	Expansion Board	
XML	Extensible Markup Language – The method used by Schne for the storing and retrieval of Config@WEB RTU data. T stored in the form of a series of XML files (files with an X extension).	The data is
XT	External Termination (panel, module or assembly)	